

Policy-driven Middleware
for Personal Area Networks

Individual Project Report

Neil Madhvani

nm300e@doc.ic.ac.uk

MEng in Information Systems Engineering
Imperial College, London

June 2004

Supervisor: Dr Naranker Dulay

Second Marker: Dr Emil Lupu

Policy-driven Middleware for Personal Area Networks

Abstract

It is quite shocking to note that only ten years ago, a mobile telephone was
generally seen as a luxury item and the vast majority were used for business
purposes. Handsets were large in size and typically heavy, with battery standby
times of less than a single day. Over the last decade we have experienced a
revolution in the market for mobile consumer electronics devices, with the
proliferation not only of mobile phones, but also products such as MP3 music
players, personal digital assistants (PDAs) and handheld entertainment systems.
As innovations in the electronics industry have lowered production costs and
raised CPU power and battery life, many of us are finding ourselves carrying an
increasing number of these devices. Whilst we have generally come to expect an
improvement in our standard of living as a result of advances in technology, this
experience may unfortunately be short-lived. The problem is that we are being
faced with an ever-increased ‘management burden’ in operating and configuring
these devices to work with one another in harmony. Technologies such as
Bluetooth and WiFi are increasing in ubiquity and are useful for connecting
devices in personal area networks (PANs); however very few attempts have been
made to automate the way in which devices behave when in close proximity to
one another.

In this report we firstly investigate recent developments in areas of research
related to this problem domain. We then propose an architecture for middleware
that we have developed, which enables personal devices to communicate
together in an effective, efficient and appropriate manner, whilst minimising the
amount of input needed from the end user. Our approach is based around the
concept of a self-managed cell (SMC), containing a core set of management
services. Later in the report, we present a case study showing a sample
application of our solution and conclude with a discussion of the contributions and
limitations of our work, as well as our thoughts for possible future extensions.

2

Madhvani, N., Imperial College, London

Acknowledgements

I would like to take this opportunity to thank my supervisor, Dr Naranker Dulay,
for his invaluable assistance and guidance throughout the course of the project. I
am particularly grateful to him for giving up so much of his time (quite often at
short notice!) to discuss my ideas at length and providing me with useful
feedback.

Thanks also to my second marker, Dr Emil Lupu, for the helpful advice he
provided me with at our project review meeting.

Finally, thanks to the numerous colleagues of mine who have offered me helpful
ideas and suggestions along the way.

3

Policy-driven Middleware for Personal Area Networks

Contents

1 INTRODUCTION...8

1.1 MOTIVATION ...8
1.2 KEY PROJECT OBJECTIVES ..10
1.3 SUMMARY OF CONTRIBUTIONS..12
1.4 REPORT OUTLINE...13
1.5 GLOSSARY OF TERMS ..14

2 BACKGROUND..16

2.1 OVERVIEW OF AREAS OF INTEREST..16
2.2 POLICY SPECIFICATION..16

2.2.1 Ponder (Imperial College, London)..18
2.2.2 CIM Policy Model (IETF & DMTF)...20
2.2.3 Potential policy caveats..21

2.3 MIDDLEWARE SYSTEMS ..22
2.3.1 Java RMI...22
2.3.2 CORBA ...23
2.3.3 Web Services: SOAP, WSDL, UDDI...23
2.3.4 Elvin..24
2.3.5 xmlBlaster...26

2.4 WIRELESS LAN & PAN TECHNOLOGIES ...26
2.4.1 Bluetooth (IEEE 802.15) ..26
2.4.2 WiFi (IEEE 802.11a/b/g)..28
2.4.3 Proprietary low-range radio networks ...28
2.4.4 Infra-red (IrDA)..29
2.4.5 Emerging PAN technologies...29

2.5 AD HOC NETWORKING ...30
2.5.1 IETF MANET..30
2.5.2 Current research issues ..31
2.5.3 Security in ad hoc networks ..31

2.6 HARDWARE DEVICES & SOFTWARE PLATFORMS..33
2.6.1 Symbian OS...33
2.6.2 Java 2 Micro Edition (J2ME) and PersonalJava ...34
2.6.3 Microsoft .NET Compact Framework...35

2.7 BRINGING IT ALL TOGETHER…..36
2.7.1 MIT: Project Oxygen ..36
2.7.2 AMUSE ...37
2.7.3 Autonomic computing ...39
2.7.4 Summary of findings & directions for focus ...41

3 PROJECT SPECIFICATION ...43

3.1 SCOPE..43
3.2 USE CASES...45

4

Madhvani, N., Imperial College, London

3.3 SUMMARY ...46

4 ARCHITECTURAL DESIGN OVERVIEW ...47

4.1 SELF-MANAGED CELL STRUCTURE...47
4.2 POLICIES AND POLICY MANAGEMENT ..49

4.2.1 System policies for device behaviour..49
4.2.2 User policies for customisation ..51
4.2.3 System configuration policies ...52

4.3 EVENTS SYSTEM ..52
4.3.1 Subscription mechanism ...53
4.3.2 Event generation & quenching ...54

4.4 DOMAIN MANAGEMENT AGENTS ...56
4.5 DEVICE DISCOVERY...58

4.5.1 Device profiles..59
4.5.2 Discovery server configuration policy..60

4.6 CONTEXT & CORRELATION ...60
4.6.1 Context data..60
4.6.2 Correlation (derived) events...62

4.7 CELL INSTANTIATION, STANDBY AND SHUTDOWN...63
4.7.1 Standby mode..64

4.8 SUMMARY ...64

5 DETAILED ARCHITECTURAL DESIGN ...66

5.1 AN OBJECT-ORIENTED ARCHITECTURE ..66
5.2 EVENTS ENGINE...66

5.2.1 Elvin Router..67
5.2.2 Core communications functionality ..67

5.3 POLICIES & POLICY MANAGEMENT AGENTS ..70
5.3.1 Encapsulation of actions...71
5.3.2 Thread & mailbox model ..71
5.3.3 Basic & derived policies ...72
5.3.4 Policy compilation ..72

5.4 DEVICE ADAPTERS...72
5.4.1 Event quenching ...74

5.5 DISCOVERY SERVER ..74
5.6 DOMAIN SERVER ...75

5.6.1 Mapping from device profiles to domains ..76
5.6.2 Adding devices to domains ...77
5.6.3 Handling incoming action objects ..78

5.7 CONTEXT & COLLABORATION ENGINE ..79
5.7.1 Contextual data...80
5.7.2 Event correlation ..80

5.8 GENERAL ARCHITECTURAL ISSUES ..81
5.8.1 Package structure ...81

5

Policy-driven Middleware for Personal Area Networks

5.9 SUMMARY ...82

6 CASE STUDY..83

6.1 SCENARIO OVERVIEW..83
6.2 DEFINING DEVICE PROFILES...84

6.2.1 Profile: common ...85
6.2.2 Profile: pda...85
6.2.3 Profile: phone ...85
6.2.4 Profile: simplealertdevice...85
6.2.5 Profile: audioplayer..85

6.3 A DOMAIN HIERARCHY ..85
6.3.1 Profile to Domain Ruleset ..85
6.3.2 Domain structure..86

6.4 SETTING UP SMC POLICIES..86
6.5 COMPOSING SYSTEM AND USER POLICIES ..87

6.5.1 System policies..87
6.5.2 User policies ...89

6.6 SUMMARY ...89

7 BUILDING A PROTOTYPE...90

7.1 PROTOTYPE OBJECTIVES..90
7.2 CHOICE OF IMPLEMENTATION ENVIRONMENT AND TOOLS...90

7.2.1 Programming language: Java ..90
7.2.2 Development IDE: Eclipse..91
7.2.3 Portable device: Microsoft Pocket PC & Jeode PersonalJava91
7.2.4 Event handling: Elvin ...92

7.3 STANDARDS & DEVELOPMENT PRACTICE ..93
7.3.1 Coding standards..93
7.3.2 Source code control ..94
7.3.3 Unit & modularised testing...94

7.4 PROTOTYPE DETAIL ...94
7.4.1 Events system..94
7.4.2 Networking technologies ..95
7.4.3 Functionality tests...95

7.5 SUMMARY ...96

8 EVALUATION AND FUTURE DIRECTIONS ..98

8.1 A REVIEW OF OUR WORK ...98
8.2 KEY ACHIEVEMENTS & CONTRIBUTIONS ...99

8.2.1 A new approach and application domain ...99
8.2.2 Our proposed extensions to the Ponder language ..99
8.2.3 Correlated events..100
8.2.4 Event quenching ...100
8.2.5 Encapsulation of actions in serializable objects...100

6

Madhvani, N., Imperial College, London

8.2.6 Distributed domain structure..101
8.2.7 Multi-threaded policy management agents...101

8.3 LIMITATIONS ...101
8.3.1 Policy compilation ..101
8.3.2 Security & trust issues ..102
8.3.3 Conflict detection & resolution...102
8.3.4 Semantics for correlated events..102
8.3.5 Cell interaction ...103

8.4 SUGGESTED DIRECTIONS FOR FUTURE WORK...103

Appendices

A1 REQUIREMENTS CAPTURE..105

A2 BIBLIOGRAPHY ...107

7

Policy-driven Middleware for Personal Area Networks

1 Introduction
The objective of this project is to attempt to design a set of middleware
that will allow devices within a personal area network (PAN) to
communicate together in an effective, efficient and appropriate manner,
with a view to minimising the amount of input needed from the end user,
thereby enabling more than just the ‘geekiest computer nerds’ to
embrace and make best use of portable technology devices as they
becomes available. As well as improving the quality of existing
applications, it is envisaged that work in this area will open up a whole
new range of exciting paradigms that were previously thought to be
impossible or infeasible.

1.1 Motivation

It is somewhat shocking to discover that only sixty years ago, Thomas
Watson, the then chairman of IBM, made the comment: “I think there is a
world market for maybe five computers." Perhaps even more alarming is
that up until the early 1980s, it was generally believed that the
widespread deployment of computer technology for consumers was
infeasible and unlikely. This is epitomised by the following quote from
Ken Olson in 1977, who was president, chairman and founder of Digital
Equipment Corp: "There is no reason anyone would want a computer in
their home." This theory has of course been proved wrong. The dramatic
fall in the price and size of microprocessors, together with the increase in
their computational power, has revolutionised our lives. Today, almost all
homes are dependent on microprocessor-controlled electronic devices,
including personal computers, televisions, video recorders, DVD players,
set-top boxes and even many kitchen appliances.

A more recent revolution, and one which is still in its infancy, concerns
the proliferation of mobile consumer electronics devices and their
increasing ubiquity. This includes mobile phones, personal digital
assistants (PDAs), MP3 players, digital watches etc. Consumers
nowadays are carrying an increasing number of these devices, resulting in
an increasing amount of time spent configuring and operating them. The
following is an example of the type of situation that many users face
today:

Bob is wearing headphones and listening to his favourite piece of classical
music on his portable MP3 player. His mobile phone starts to ring, but it
takes him a while to realise that he has an incoming call from Alice,
because the music happens to be quite loud. Once he becomes aware of
the call, he fumbles to find the pause button on his MP3 player. By the
time he is finally in a position to be able to answer the call, Alice has

8

Madhvani, N., Imperial College, London

already been transferred to Bob’s voicemail and he ends up having to call
her back. He sighs and concedes that these kinds of problems are only
going to intensify as he adds to his collection of ‘gadgets’.

As the example above illustrates, whilst technology is continually
providing us with a range of new opportunities, the benefits of these
developments are unlikely to be realised unless personal electronic
devices are able to communicate with each other, and reduce the
management burden on users. To date, very few attempts have been
made to automate the management of these devices and this is already
causing inconvenience and frustration for many people. Whilst one may
argue that users ought to perhaps carry a single universal device that
could incorporate a myriad of functions, this is unlikely to be a feasible
option. Whilst we can already purchase devices that offer more than one
function, such as a combined phone/PDA, these tend to be larger in size
and may also lack flexibility. Therefore the issues of self-management
and device collaboration (discussed later) require our attention today,
if we are to ensure that new technology will continue to improve our
quality of living rather than be viewed as an inconvenience. Going back
to our scenario with Bob and Alice, this is perhaps what we would like to
see instead:

Bob is wearing headphones and listening to his favourite piece of classical
music on his portable MP3 player. His mobile phone starts to ring, and
the music automatically pauses without any intervention. He hears a
message through his headphones that includes the name of the caller,
Alice. Bob has been expecting this important call, and answers it
immediately. Whilst talking to Alice, he picks up his PDA, which has
already sensed that he is on the phone to Alice and alerts him to the fact
that it was her birthday a few days ago. He wishes her a belated happy
birthday. At the end of the call, his MP3 player resumes playback, again
without Bob having to do anything. He smiles and thinks to himself –
isn’t technology just wonderful!

Whilst our focus is directed towards the interaction of consumer devices,
similar concepts are already being considered for applications such as e-
healthcare. In the field of medicine, it is becoming increasingly important
for those caring for a patient in a hospital for example to have access to
up-to-date information and to be alerted about changes in health
conditions. A slightly different application is where teams of people on a
rescue mission need to work together in an environment with no inherent
networking infrastructure. If the devices of several emergency forces
could collaborate with one another, without having to waste valuable time
configuring hardware and software on arrival, this could have a significant
positive impact on the success of the operation.

9

Policy-driven Middleware for Personal Area Networks

A complementary vision is that of utility computing where enterprises
and users will be able to tap into potentially vast computational resources
from ‘low-end’ devices. BusinessWeek comments that the idea is to
“make computing power into another pay-as-you-go service, like water or
electricity” [BUSN03]. Whilst there are a number of challenges to be
overcome in this field, it is almost certain that the areas of utility
computing and self-management will meet somewhere in the middle.

1.2 Key Project Objectives

Before we discuss the goals of the project in any level of detail, it is worth
defining the operative words in the choice of title for this piece of work:

• Policy-driven – a policy in this context refers to a specification of
some rule that governs the behaviour of one or more managed
objects, triggered by some event in the system, such as a time
event, or the discovery of a service. Policies are used in a range of
areas such as in the network security arena, where firewalls that
prevent data from passing from one network to another may be
configured through the definition and parsing of such policies. In
this project we focus on obligation policies, which are modelled
around the concept of event-condition-action (ECA) rules, i.e.
we use the policy to specify what behaviour (action) should occur
when the event occurs, if the given condition evaluates to true.
Policies provide with a degree of flexibility and dynamic
configurability. For example, if devices are grouped in a
hierarchical fashion, a single policy, when activated, may affect the
behaviour of a range of devices rather than just a single one. We
will look at the policy-driven paradigm in further detail in the
background study, which follows in Chapter 2.

• Middleware - Middleware is used to describe sets of services and
abstractions that facilitate the development and deployment of
distributed applications in heterogeneous computing environments.
Middleware is frequently used in the client/server paradigm, where
it is beneficial (e.g. for performance reasons) to introduce an
additional middle layer between a server and its users. In the
context of this project, we use middleware to refer to a proposed
architecture in which devices with different low-level
implementations of functionality share a set of common services
and abstractions, permitting development, deployment and
management of Personal Area Network applications. In the next
chapter, we will look at the types of middleware solutions available
today and investigate a selection of them.

10

Madhvani, N., Imperial College, London

• Personal Area Networks – often abbreviated to PAN, these
networks are similar to Local Area Networks (LAN), however the
objective of a PAN is to network devices that are close to one
person, such as phones and PDAs. The devices may or may not
belong to the person in question. The reach of a PAN is typically
just a few metres. PAN is quite a generic term, and there are
specific types such as a Piconet, which is one that can be formed
using devices that communicate over Bluetooth. In addition, there
are several esoteric PANs, such as those that exploit the
electroconductivity around the body to transmit data, and we will
look at an example of this in the following chapter.

The most important areas of interest that we have selected in particular
for investigation are:

• Generic device support – the proposed solution will not be tied
to a specific set of devices. This is of particular importance in the
consumer electronics arena, where the range and variety of
devices is changing on a daily basis. Instead, the focus will be of
defining how device functionality can be grouped into profiles,
and how additional profiles can be defined and used. In the
context of our work, profiles define the events that can be
generated by devices, and the actions which can be performed on
them. The analogy here is with Bluetooth profiles, which define
functionality that is supported on top of the main protocol stack.

• Flexible and expansible architecture – a modular, object
oriented approach will be advocated and used wherever possible,
enabling enhancements to be made by replacing one or more
pluggable components within the architecture.

• High configurability – one of the key objectives is to develop a
solution that is highly configurable. An area to be investigated
here is how we can use policies not just for defining device
collaboration, but also for the purposes of the configuration of the
whole architecture. These may be higher-level management
policies.

• Mobility – it is clear that mobile devices tend to move in and out
of proximity of each other on a regular basis. It is therefore
appropriate to consider how these situations should be handled in
as seamless a manner as possible.

• Low management overhead – whilst portable devices are
becoming smaller in size, unfortunately improvements in battery
technology are not keeping up at anywhere near the same pace.

11

Policy-driven Middleware for Personal Area Networks

Therefore power should be seen as a scarce resource and its
consumption should be minimised wherever possible.

1.3 Summary of contributions

The work that we present in this report begins with a background study
that we conducted in the early stages of the project, to investigate recent
developments in relevant, related areas. In addition to looking at issues
such as policy specification and ad hoc networking, we also spent time
investigating the work conducted by project such as MIT’s Project Oxygen
and the AMUSE Project that is a joint effort between Imperial College,
London and the University of Glasgow. AMUSE is very closely aligned to
our work, and we draw on several of the concepts that this project has
proposed, such as the self-managed cell (SMC) architecture. We also
looked at the area of autonomic computing in some detail, based on
work initiated by IBM.

We then build upon our background study and propose a Policy-driven
Middleware for Personal Area Networks. We take a two-staged approach
to the presentation of our design. Firstly, we cover the entire system in
high-level detail, focussing on the key interactions between the
management components and PAN devices. We then provide a detailed
architectural design, describing how our design concepts can be
translated into a software implementation. We subsequently present a
case study, showing how our solution may be used to solve a set of
problems facing a user who owns a range of consumer devices. We then
describe a ‘proof of concept’ prototype implementation that we carried out
using Java and a selection of other supporting tools.

The key contributions that we believe this work has made in this area are
as follows:

• Definition of a SMC structure for PANs – we propose a set of
mandatory management components for our SMC and provide a
detailed design for each.

• Development of a flexible architecture – wherever possible,
we enable behaviour to be defined through configuration data
rather than being hard-coded.

• Explicit support for processed and unprocessed contextual
data – the approach we advocate is that contextual data may be
obtained from devices such as sensors that exist outside of a SMC
but may also be generally internally, e.g. translation of low-level
concepts such as numerical values into high-level ones such as
{high, medium, low}.

12

Madhvani, N., Imperial College, London

• A model for handling correlated events – we recognise that
raw events on their own may not be of use. We therefore propose
a scheme by which policies can trigger based on event patterns
and ordering. We use a state machine based approach and
provide pointers for future development.

• SMC policies – in addition to using policy notation to specify
device behaviour, we use SMC policies to configure various aspects
of the middleware.

• Pure asynchronous event bus – we advocate the use of a single
asynchronous event bus for all communication, based on the one-
shot paradigm rather than request/reply. Our approach is to keep
the communication model as simple as possible, in order to
minimise overhead.

• Event quenching – in our implementation, producers of events
do not transmit them on to the bus unless there are consumers
who are interested in them. This significantly reduces unnecessary
network traffic and improves efficiency.

• Action encapsulation – we propose a scheme in which actions to
be performed on devices are encapsulated in an object and sent in
a serialized form for execution. We suggest that this is a neater
solution that carrying out a remote method call on a device.

• Distributed, multi-threaded architecture – our design enables
management components to be distributed across several different
devices if required, though we suggest that a centralised approach
may be more efficient in many cases. In addition, our domain and
policy management agents exploit concurrency by running as
individual threads.

1.4 Report outline

Chapter 1 (Introduction) provides the motivation for our work,
presents the key project objectives and summarises our achievements.

Chapter 2 (Background) presents a study into areas of research related
to our problem domain, including ad hoc networking, policy specification
and recent developments in hardware and software platforms for personal
devices. We also look at a selection of ongoing research projects that are
working on similar issues.

Chapter 3 (Project Specification) defines the scope of our work, the
key requirements for the solution we have developed and the main
interactions with the system.

13

Policy-driven Middleware for Personal Area Networks

Chapter 4 (Architectural Design Overview) presents a high-level
description for our middleware architecture. We start by looking at the
components that make up a self-managed cell and then discuss the
behaviour of each of these.

Chapter 5 (Detailed Architectural Design) builds upon the work
presented in the previous chapter. Whilst we looked at relatively high-
level concepts in Chapter 4, here we discuss implementation issues and
use UML notation to show the structure of the software that we propose.

Chapter 6 (Case Study) attempts to take a step back to the user and
application domains, in order to consider how the solution we have
developed could be used to solve a type of problem that we may expect
to come across. The intention is that this should also serve as a form of
tutorial for developers wishing to use the design to solve similar
problems.

Chapter 7 (Building a prototype) discusses the work that we carried
out later in the project to construct a working demonstration of a subset
of our architecture. The aim of this exercise was to carry out ‘proof of
concept’ tests in order to integrate our new functionality with existing
third-party products we are using such as the Elvin event system.

Chapter 8 (Evaluation and future directions) reviews the work we
have carried out, highlighting what we consider to be the key
achievements and limitations of our approach. We also make suggestions
for possible extensions to our work and potential areas of interest for the
future.

Appendix A1 (Requirements Capture) provides extensions to the
specification material presented in Chapter 3. In this appendix, we make
use of UML use case notation which is useful for capturing the key ‘actors’
in a system and how they require to interact with it.

Appendix A2 (Bibliography) provides references to sources used
during this project.

1.5 Glossary of terms
API Application Programmers Interface
CCE Context & Collaboration Engine
CF Compact Framework
CIM Common Information Model
CORBA Common Object Request Broker Architecture
CVS Concurrent Versions System
DEN Directory Enabled Network
DMA Domain Management Agent
DMTF Distributed Management Task Force
DSTC Distributed Systems Technology Centre

14

Madhvani, N., Imperial College, London

ECA Event-Condition-Action
GoF Gang of Four (Erich Gamma, Richard Helm, Ralph Johnson,

John Vlissides)
GPRS General Packet Radio Service
GSM Global Standard for Mobile Communications
HTTP Hypertext Transfer Protocol
IDL Interface Definition Language
IEEE Institute of Electrical & Electronic Engineers
IETF Internet Engineering Task Force
IrDA Infrared Data Assocation
J2ME Java 2 Micro Edition
J2SE Java 2 Standard Edition
JVM Java Virtual Machine
LAN Local Area Network
LDAP Lightweight Directory Access Protocol
MANET Mobile Ad hoc NETworks
MP3 MPEG I Layer 3 Audio
OMG Object Management Group
ORB Object Request Broker
P2P Peer-to-Peer
PAN Personal Area Network
PDA Personal Digital Assistant
PMA Policy Management Agent
QoS Quality of Service
RMI Remote Method Invocation
RPC Remote Procedure Call
SDK Software Development Kit
SMC Self-Managed Cell
SOAP Simple Object Access Protocol
TCP/IP Transmission Control Protocol/Internet Protocol
UDDI Universal Description, Discovery and Integration
UDP User Datagram Protocol
UML Unified Modelling Language
WAN Wide Area Network
WAP Wireless Application Protocol
WiFi Wireless Fidelity
WSDL Web Services Description Language
XML eXtensible Markup Language

15

Policy-driven Middleware for Personal Area Networks

2 Background
This chapter provides a summary of the background study carried out
within fields related to this project. The aim of this exercise was to
investigate and assess the impact of recent developments in the mobile
computing, cellular telephony, policy specification and ad hoc networking
arenas. The chapter ends with a summary of the key technical challenges
that have been identified.

2.1 Overview of areas of interest

The Alice and Bob scenario that we considered in our motivational section
in the previous chapter provides us with a useful starting point for
determining the areas that we should investigate in our background
study. Firstly, we are interested in a method of expressing the behaviour
of devices in response to the occurrence of events. For example, we
would like to state that when an incoming call from Alice comes in on
Bob’s phone, he should be alerted to this via his MP3 player. We
therefore investigate the area of policy specification including some of the
existing approaches.

Our requirement for devices to be able to communicate with each other
leads us to consider the types of middleware systems available and to
find a suitable approach for the product that we are building. We then
consider networking technologies in Local Area Networks and Personal
Area Networks and investigate recent developments in Mobile Ad hoc
Networking. Since we would like to produce a prototype later in the
project, we include as part of our background study, a consideration of
what is ‘state-of-the-art’ in terms of hardware and software platforms.

Finally, we look more specifically at other work that is currently being
carried out in the area of PAN self-management.

2.2 Policy specification

In this section, we investigate policy specification, an active research
topic and pertinent to this work, since we are proposing the use of policies
to specify device behaviour in a personal area network. Policies are rules
governing the choices in behaviour of a system [SLOM02]. Two classical
types of policies are:

• Authorisation Policies – these policies define which resources or
services a subject can access. A subject may be a managed
object, a management agent or a user.

• Obligation Policies – these are event-triggered condition-action
rules. They define what a subject must or must not do.

16

Madhvani, N., Imperial College, London

Current policy research includes proposals for trust and privacy
specification, digital rights management, context-aware policies and
intrusion response policies.

There is an important distinction between policies and one-off commands
in that policies are persistent. The authors suggest that the main
motivation for the recent interest in policy-based systems is to support
dynamic adaptability of behaviour by changing policy without recoding or
stopping the system. Such a scheme makes the use of a policy-driven
architecture particularly useful in a distributed environment where it is
necessary to distribute the policies across many heterogeneous
components.

Of particular interest to this project is the ability to specify policies
relating to groups of entities rather than just to individual resources. Just
as for implementing security policy, it may be desirable to divide up the
resources into departments, for management policies we may wish to
divide up devices into different types, based on the functionality that they
can provide. These groups are often referred to as ‘domains’ [SLOM94],
and a management domain can be defined as a collection of managed
objects which have been explicitly grouped together for the purposes of
management.

This paper also draws a distinction between direct and indirect members
of a domain:

• Direct member – if a domain holds a reference to an object then
the object is said to be a direct member of that domain and the
domain is said to be its parent.

• Indirect member – domains may be members of other domains
in a hierarchical fashion; this relationship is known as a

Figure 2.1: Management domain structure [DAMI99].

17

Policy-driven Middleware for Personal Area Networks

‘subdomain’ of a parent. Members of a subdomain are then
indirect members of the parent domain.

This model provides flexibility and is similar to hierarchical file systems.
Entities can be direct or indirect members of multiple domains. If an
entity if a direct member of multiple domains, then the parent domains
are said to ‘overlap’. This domain structure fits well with the requirement
in this project for devices to be able to belong to multiple groups, e.g. a
combined phone/PDA device may belong to both the Phone and the PDA
group. Figure 2.1 shows an example of a domain hierarchy with sub-
domains and overlapping domains.

2.2.1 Ponder (Imperial College, London)

Ponder is a declarative, object-oriented language for specifying security
and management policy for distributed object systems [DAMI01]. Both
obligation and authorisation policies are supported. Work has also been
done to map Ponder policies on to various access control mechanisms
such as firewalls, operating systems, databases and Java [SLOM02]. A
significant feature of Ponder is its support for domains that enable objects
to be grouped in a hierarchical manner. Membership of domains in
Ponder is explicit and not defined in terms of a predicate on object
attributes. The scheme of direct and indirect domain membership is
implemented as we discussed earlier in this chapter, enabling policy
propagation.

Although Ponder supports a range of additional types of policies such as
delegation and refrain, we only consider the two main ones here, namely
authorisation and obligation. In addition we take a brief look at
composite policies. Authorisation policies define what activities a member
of the subject domain can perform on the set of objects in the target
domain and have the following syntax:

inst (auth+ | auth–) policyName “{”
subject [<type>] domain-Scope-Expression ;
target [<type>] domain-Scope-Expression ;
action action-list ;
[when constraint-Expression ;] “}“

The type auth+ denotes a positive authorisation policy (actions that
subjects are permitted to perform on target objects), whereas auth-
denotes a negative authorisation policy (actions that subjects are
forbidden to perform on target objects). An example of a positive
authorisation policy is:

inst auth+ sendTextMessages {
subject /users/children ;
target /dev/cellular/phones ;

18

Madhvani, N., Imperial College, London

action send_text_message(msg) ;
when time.between(“0900”,”1900”) ;

}

The above policy specifies that users in the /users/children domain are
permitted to send text messages on devices in the /dev/cellular/phones
domain between the hours of 09:00 and 19:00. Similarly, we could
define an auth- (negative authorisation) policy to explicitly prohibit the
activity between a given time period.

In contrast, obligation policies are event-triggered condition-action rules.
These policies define the activities that subjects must perform on objects
in the target domain. The syntax for obligation policies in Ponder is as
follows:

inst oblig policyName “{”
on event-specification ;
subject [<type>] domain-Scope-Expression ;
[target [<type>] domain-Scope-Expression ;]
do obligation-action-list ;
[catch exception-specification ;]
[when constraint-Expression ;] “}”

An example of an obligation policy we could possibly use for the self-
management of consumer devices is:

inst oblig incomingCellularCall {
on eventIncomingCellularCall(callerID) ;
subject s = /dev/cellular/phones/Manager ;
target t = /dev/music ;
do t.mute() -> t.playCallerID(callerID) ;
when s.profile != “do not disturb” ;

}

The above policy is triggered when the eventIncomingCellularCall event
occurs. At this time (i.e. an incoming call is coming in), all devices that
are in the /dev/music namespace will be asked to mute by the Manager
object sitting in the /dev/cellular/phones domain, and to then play out the
incoming caller’s ID to the user. However these actions will not be carried
out if the phone’s profile is in the “do not disturb” mode, i.e. the user
doesn’t want the music to stop when a call comes in!

Note that the subject and target can be individual entities or domains. In
the example above, the subject was a single entity (a policy management
agent). If we had specified s = /dev/cellular/phones, then effectively all
devices in that domain would have to perform the action on all of the
devices in the target domain.

As specified in the Ponder language, the basic policy constraints can be
derived from:

19

Policy-driven Middleware for Personal Area Networks

• Subject/target state – reflected by attributes at an object’s
interface.

• Action/event parameters

• Time constraints, e.g. between 0200 and 0400.

In addition to the primitive policies discussed above, Ponder also supports
composite policies in order to be able to group policies and structure them
to reflect organisational structure, preserve the natural way system
administrators operate, or simply provide reusability of common
definitions [SLOM02b]. There are two key types of composite policies:

• Roles – provide a semantic grouping of policies with a common
subject, generally pertaining to a position within an organisation.
For example, we may wish to specify policies in terms of manager
positions rather than specific individuals, as if an individual leaves
that position it is inconvenient and inefficient to have to re-specify
the affected policies. We can also use a role to specify the policies
that apply to an automated component acting as a subject in the
system.

• Relationships – groups the policies defining the rights and duties
of roles towards each other. Relationships provide an abstraction
for defining policies that are not the roles themselves but are part
of the interaction between the roles.

The policies above are specified by enveloping the relevant auth and oblig
policies within an outer type role <role Name> (params) or type rel <rel
Name> (params) as appropriate. Further details can be found in the
Ponder documentation [SLOM02b].

As well as a language for policy specification, the work on Ponder has also
resulted in the creation of a development toolkit including a compiler that
maps policies to low-level representations such as Java code and
Windows 2000 security templates. These tools are of some interest to
this project, since the scope exists to develop extensions that can
generate low-level policies suitable for our implementation from higher-
level Ponder policy definitions.

2.2.2 CIM Policy Model (IETF & DMTF)

The IETF’s Policy working group [IETFWWW] and the Distributed
Management Task Force (DMTF) [DMTFWWW] have jointly developed an
object-oriented policy model that enables constructing policy rules of the
form: if <condition(s)> then <action(s)> [DMTF04]. They define a policy
as a ‘definite goal, course or method of action to guide and determine
present and future decisions’. The proposed policy model is an extension

20

Madhvani, N., Imperial College, London

to the Common Information Model (CIM), a hierarchical architecture
comprised of a specification and a schema. The CIM Specification defines
the details for integration with other management models, while the CIM
Schema provides the actual model descriptions.

The CIM Policy Model does not however distinguish between authorisation
and obligation policies. In addition, the policy rules do not include an
explicit triggering event. It is assumed that the agent interpreting the
event will evaluate the policy when an implicit event occurs [SLOM02].
Aggregation is supported through the use of nested policy groups.
Conditions and actions can be specific to a particular rule but can also be
stored in a separate policy repository and then reused by multiple rules.

A possible advantage of the CIM Policy Model is that whilst CIM is
designed to be technology and implementation-neutral, the IETF have
defined a mapping from CIM to the Lightweight Directory Access Protocol
(LDAP). This work is referred to as the Directory Enabled Network (DEN)
initiative [DMTF04b] and is an ongoing project, however the mapping
from CIM v2.5 to LDAP is available today.

2.2.3 Potential policy caveats

One of the most interesting areas of active research in the field of policy
specification concerns conflict analysis. In a system with many policies,
it is quite likely that the decision process affecting the behaviour of an
object at a particular moment in time may not in a decisive course of
action if more than one policy is relevant and there is disagreement
between those policies. For example, on an incoming phone call, one
policy wishes to mute all music devices, whereas another simply wants to
lower the volume. There is a conflict since we cannot determine which of
the two actions should be performed. The IETF framework advocates a
solution consisting of priorities that are assigned to each policy, however
it is suggested [SLOM02] that this is difficult to implement in large
systems where many different people are involved in the specification of
policies.

The approach taken in Ponder is to detect modality conflicts (those that
arise between corresponding auth+ and auth- policies) using syntactic
analysis. Other types of conflicts can only be detected by understanding
the actions being performed by the policies. It is suggested that
constraints should be specified using meta-policies and the policy set
should then be analysed against the constraints to see if there are any
conflicts.

Whilst the focus on this project is not to investigate or try to resolve these
types of policy-related problems, we can still take steps in our design to
reduce the chances of these occurring by using tighter policies.

21

Policy-driven Middleware for Personal Area Networks

2.3 Middleware systems

The IEEE Distributed Systems group [DSOL03] suggests that the role of
middleware is to ease the task of designing, programming and managing
distributed applications by providing a simple, consistent and integrated
distributed programming environment. Essentially, middleware is a
distributed software layer, or ‘platform’ which abstracts over the
complexity and heterogeneity of the underlying distributed environment
with its multitude of network technologies, machine architectures,
operating systems and programming languages.

In this section we take a look at several off-the-shelf middleware
solutions that can be used to build distributed systems. This area is of
particular interest to this project since we would like to find an efficient
method of enabling heterogeneous portable devices to communicate in a
personal area network. There are a number of different types of
middleware, the most important of which are:

• Object-based middleware – applications are structured into
potentially distributed objects that interact via location transparent
method invocation. Examples are OMG’s CORBA, Java RMI and
Microsoft’s Distributed COM architecture. Communication between
objects is of the request-reply style.

• Event-based middleware – employs ‘single shot’ style
communication rather than request-reply. This type of middleware
is particularly suited to the construction of non-centralised
distributed applications that must monitor and react to changes in
their environment. An example is Mantara’s Elvin.

• Message-oriented middleware – similar to the above but
focussed towards applications in which messages need to be
persistently stored and queued. A popular example is IBM’s
MQSeries.

Next, we take a look at a selection of real middleware solutions.

2.3.1 Java RMI

Java’s RMI (Remote Method Invocation) allows Java developers to invoke
object methods and have them execute on remote Java Virtual Machines
(JVMs). RMI is basically an object-oriented RPC (Remote Procedure Call)
mechanism. One of the major advantages of RMI is its ability to pass and
return entire objects as parameters. Any object can be passed as a
parameter, meaning that new code can be sent across a network and
dynamically loaded at run-time by foreign virtual machines [REIL00].
RMI makes use of a registry – a remote object that maps names to
remote objects. A server registers its remote objects with the registry so

22

Madhvani, N., Imperial College, London

that they can be looked up. When an object wants to invoke a method on
a remote object, it must first lookup the remote object using its name.
The registry returns to the calling object a reference to the remote object,
using which a remote method can be invoked.

RMI is being increasingly used as an object-based middleware in a range
of distributed applications, however we have highlighted a few potential
drawbacks of using RMI in the context of this project:

• Java only – it would be preferable not to tie ourselves to a
particular language. Although Java is portable across platforms,
many personal consumer devices still do not support it.

• RMI not supported in J2ME – many phones and PDAs support a
cut-down version of Java, known as Java 2 Micro Edition (J2ME).
This does not provide any RMI support.

• Potentially high overhead – RMI uses a synchronous request-
reply scheme and there is an overhead involved in object
serialisation. For collaboration about change of state in a personal
area network, an event-driven approach is likely to be preferable,
since we only need to broadcast a limited amount of information.

2.3.2 CORBA

CORBA (Common Object Request Broker Architecture) is similar to RMI in
many ways but offers greater portability by not being tied to one
particular programming language [REIL00]. CORBA can’t be used to send
executable code across to remote systems however. CORBA services are
described by an interface, written in the Interface Definition Language
(IDL). There are IDL mappings for many languages and there is future
scope for adding CORBA support to other languages. However a CORBA
implementation requires the deployment of ORBs (Object Request
Brokers). ORBs are like registries; they are used to hold published
service interfaces, which clients query and then bind to. Communication
proceeds directly once clients have bound to servers. This presents an
additional overhead and therefore may not be an appropriate choice of
middleware for personal area networks.

2.3.3 Web Services: SOAP, WSDL, UDDI

Web services are a relatively new method of application-to-application
interaction and developments in this area have been fuelled by the
growth in use of the Internet to conduct business transactions. The
intention is to replace ad hoc and proprietary protocols with a systematic
and extensible framework that runs on top of existing Web protocols and

23

Policy-driven Middleware for Personal Area Networks

uses open XML standards [CURB02]. The framework can be divided into
three key areas:

• communication – the Simple Object Access Protocol (SOAP)
which was initially created by Microsoft is an XML-based protocol
for messaging and remote procedure calls. One of the advantages
of SOAP is that rather that defining a new transport protocol, it
works on existing ones such as HTTP and SMTP. In addition, SOAP
implementations exist for a range of programming languages
including C, Java and Perl.

• service description – the Web Services Description Language
(WSDL) is an XML format developed by IBM and Microsoft that
describes the interface of a Web service and provides users with a
point of contact. WSDL effectively provides a formalised
description of client-service interaction including the permitted
exchange of messages.

• service discovery – the Universal Description, Discovery and
Integration (UDDI) specifications offer users a unified and
systematic way to find providers of Web services through a
centralised registry. It is analogous to an online “phone directory”.

Web services are already being used with portable devices such as PDAs –
for example, Microsoft’s .NET Compact Framework allows developers to
create applications for the Pocket PC environment that can ‘consume’ Web
services. It is also possible to deploy such applications on a range of new
Smartphone devices which tend to be smaller than PDAs. Web services
are however more ideally suited to applications where it is necessary for
client devices to retrieve information from a server, rather than for
sharing of events between devices.

2.3.4 Elvin

Elvin [DSTCWWW] is an event-based middleware product originally
developed by the Distributed Systems Technology Centre (DSTC) at the
University of Queensland, Australia. The product has recently been
commercialised and is now owned and developed by Mantara Software
[MANTWWW]. Elvin uses a client-server architecture for delivering
notifications. Clients establish sessions with an Elvin server process and
are then able to send notifications for delivery or register to receive
notifications sent by others. Clients can act as both producers and
consumers of information within the same session.

The task of an Elvin server, or router, is to manage client connections and
route notifications from producers to consumers. Consumers express their
interest in a notification by registering a subscription with the server. This

24

Madhvani, N., Imperial College, London

subscription expresses selection criteria in terms of the content of each
message. When the server receives a notification, it checks the content of
the message against the registered subscriptions and forwards the
notification to each client with a match. A single notification can match
any number of subscriptions and is delivered to all active clients with a
match [DSTC03].

More recent versions of Elvin also support the concept of ‘quenching’. A
quench is a reverse subscription and provides added efficiency by only
distributing notifications when there are subscribers who are interested in
them. This feature is of particular interest for this project, since devices
may have the ability to send information about a wide range of different
types of state change, however it makes sense to only transmit as much
information as is required by other devices that comprise the system.

The Elvin protocol is extremely lightweight and simple. A notification is
simply an arbitrary length list of name-value elements, similar to a
Hashtable in Java. For example, we could use the following notification
to notify devices about an incoming mobile phone call:

eventName: “onIncomingCellularCall”
callerID: “+447082919204”
timeOfCall: 20040525125434

Subscriptions are then formed using Elvin’s own subscription language
[MANT04], which is based on logical expressions. An example that would
trigger for all notifications of the above type except when the callerID
value is null can be given as follows:

require(eventName) && eventName == “onIncomingCellularCall”
&& callerID != null

To make use of Elvin, it is firstly necessary to install the Router, which is
the centralised component that all consumers and producers talk to.
Currently, this product can only run on the Microsoft Windows
environment and various flavours of UNIX. This effectively means that it
is likely to prove difficult to install Elvin on a PDA for example at the
current time. However Elvin SDKs are available for Java, C/C++,
Microsoft COM and Python and this makes it possible to run Elvin-based
applications on pocket devices using the Jeode PersonalJava virtual
machine, for example. The advantages of high throughput and low
overhead make Elvin a good candidate for a personal area network
middleware.

25

Policy-driven Middleware for Personal Area Networks

2.3.5 xmlBlaster

xmlBlaster [XMLBWWW] is an example of a message-oriented
middleware. The key features of this product are:

• Both publish/subscribe and point-to-point communication types
supported.

• 100% Java based – the xmlBlaster server can only run on a Java
platform.

• Language neutrality for clients – supports many languages
including C/C++, Java, Python, PHP, Javascript, Perl, C#, Visual
Basic .NET.

• Multi protocol support – includes CORBA, RMI and xmlRPC. Clients
are free to choose their preferred protocol.

• Use of standard XML XPath expressions for subscriptions.

The xmlBlaster product is developed under the open source model, and is
therefore available for commercial and non-commercial use at no charge.
Messages can contain virtually anything, including GIF images, Java
objects, XML data and plain text. xmlBlaster is an extremely flexible
architecture with relatively low overhead. The results of tests carried out
by xmlBlaster indicate that the best performance can be achieved using
CORBA as the protocol, however RMI is only slightly slower.

2.4 Wireless LAN & PAN technologies

Over the last few years, there has been a prolific growth in the use of
Bluetooth and WiFi in particular, as the costs of these technologies have
fallen. Conceptually, the difference between a PAN and a wireless LAN is
that the former tends to be centred around one person while the latter is
a local area network (LAN) that is connected without wires and serving
multiple users. Cellular radio networks fall into the category of Wireless
WANs (Wide Area Networks) since communication between terminals and
base stations is at a much greater distance.

2.4.1 Bluetooth (IEEE 802.15)

The Bluetooth standard was developed by a Special Interest Group (SIG)
consortium including Ericsson, IBM, Intel, Nokia and Toshiba and was
envisaged to be a replacement for cable, infrared and other connection
media [SUNM04]. Bluetooth is designed to connect small devices like
PDAs and mobile phones. The technology has the following primary
advantages:

26

Madhvani, N., Imperial College, London

• automatic – there is the potential for devices to find each other
and communicate automatically without the need for initiation.

• inexpensive – many devices already have Bluetooth transceivers
built-in and the cost of incorporating Bluetooth into a device is now
less than $20 per unit.

• unlicensed radio
band – most
governments have
agreed on a single
standard so the same
devices can be used in
almost all countries.

• robust – Bluetooth,
unlike infra-red does
not require a line-of-
sight link. Signals are
omni-directional and
can pass through walls
and briefcases.

Bluetooth is already being
used in a range of applications
such as wireless headsets that
connect to mobile phones, device synchronisation, car kits and to a
limited extent for mobile payments, where a mobile phone may be able to
communicate with a vending machine in order to conduct a transaction
for a can of soft drink where the charge is applied to the customer’s bill.

However as Groten and Schmidt [GROT01] comment, until recently,
Bluetooth was mainly pictured as a cheap technology enabling peer-to-
peer communications between a central terminal such as a mobile phone
and peripheral supporting devices such as wireless headsets. The concept
of wireless ad hoc networks has changed this however, and Bluetooth is
now perceived to be a much more useful technology for use in Personal
Area Networks, where multi-hop routing and lack of fixed infrastructure
are particularly important characteristics. Bluetooth-enabled devices are
organized in groups called piconets. A piconet consists of a master and up
to seven active slaves. A master and a single slave use point-to-point
communication; if there are multiple slaves, point-to-multipoint
communication is used. A master unit is the device that initiates the
communication. A device in one piconet can communicate to another
device in another piconet, forming a scatternet, as depicted in Figure 2.2.
A master in one piconet may be a slave in another.

Figure 2.2: Scatternet of 3 Piconets
[SUNM04]

27

Policy-driven Middleware for Personal Area Networks

The Bluetooth specification is now quite mature and includes a Protocol
Stack as well as series of profiles that are intended to ensure
interoperability among Bluetooth-enabled devices and applications from
different manufacturers and vendors. The most relevant of these to this
project is the Bluetooth Personal Area Network (PAN) profile. An ad hoc
network in the PAN profile consists of a single Bluetooth piconet. The PAN
profile does not cover scatternet networking [AFFI04], however this is not
considered to be a problem, since most users are unlikely to have more
than 8 devices in their personal area network.

2.4.2 WiFi (IEEE 802.11a/b/g)

WiFi is currently one of the best performing areas of today’s
communications business. In 2002, annual industry revenues exceeded
$1 billion and are expected to exceed $4 billion by 2007 [HENR02]. The
term WiFi is generally used as a friendly name to refer to the IEEE
802.11b standard, which is the most popular and widely deployed
technology for wireless local area networking in both business and home
environments. The technology was originally designed primarily for
private applications but is also being used in public places to create
hotspots where users with WiFi hardware can obtain wireless broadband
Internet access.

A key advantage of WiFi technology is that many devices already support
it, either internally or via an optional card. In addition, it is possible to
run WiFi in infrastructure or ad-hoc mode, where the latter is of particular
interest for peer-to-peer (p2p) networks. The range for WiFi is
considerably higher than for Bluetooth – typically several hundred metres
as opposed to only a few metres. However WiFi has a much higher power
consumption as a result and as a result it could be argued that Bluetooth
is a more efficient technology for building personal area networks
consisting of small, battery-powered devices.

The 802.11b standard operates at speeds of upto 11Mbps, whereas the
newer 802.11a and 802.11g technologies increase this to a maximum of
54Mbps. These speed increases are likely to be useful for wireless local
area networking, where the devices being networked are typically desktop
and notebook PCs. However for the foreseeable future, we are unlikely to
see higher-speed wireless technologies supported in phones, PDAs and
other small consumer devices since the benefits are unlikely to outweigh
increased power requirements and complexity of hardware.

2.4.3 Proprietary low-range radio networks

Whilst Bluetooth and WiFi have positioned themselves as the most
popular wireless communication mechanisms in the last few years,
several vendors have developed alternative proprietary low-range

28

Madhvani, N., Imperial College, London

solutions. An example is Cybiko [CYBIWWW], who have designed and
produce pocket-sized devices that they refer to as ‘wireless inter-
tainment’ computers. Each Cybiko has a radio range of around 150m
indoors and 300m outdoors, but multi-hop
routing is a built-in feature of the system,
meaning that Cybikos form an ad hoc network
to increase the effective communication range.
Whilst the lack of compatibility with other
devices clearly limits the potential usefulness of
Cybiko, it is a useful practical demonstration of
the underlying principles and applications of
wireless ad hoc networking.

2.4.4 Infra-red (IrDA)

IrDA is an infrared wireless communication
technology developed by the Infrared Data
Association and is a specific use of infrared light
as a communications medium [PREN04]. IrDA
is not considered to be of particular interest for
building personal area networks, but it has been
included here for completeness, since it was an
extremely popular technology for short-range
communications before the emergence of
Bluetooth and WiFi. Because infrared uses the
nonvisible infrared light spectrum, IrDA communication is blocked by
obstacles that block light (such as walls, doors, briefcases, and people).
In addition, the effective range of infra-red is only around 1 metre and
line-of-sight is generally required. The advantages of IrDA are low power
consumption and low cost, however Bluetooth also fits well into these
categories and provides enhanced range. In particular, since Bluetooth
does not require a line-of-sight link, it is likely to prove much popular as a
choice for linking devices in a personal area network.

Figure 2.3: A
Cybiko unit [STRE04]

2.4.5 Emerging PAN technologies

There is a considerable amount of
ongoing research in the personal area
networking arena. One of the more
unusual and exciting areas is Thomas
Zimmerman’s technology [ZIMM96]
that uses the natural electrical
conductivity of the human body to
transmit electronic data. Using a
small prototype transmitter (roughly
the size of a deck of cards)

Figure 2.4: Data exchange in a
Zimmerman PAN [IBMR96]

29

Policy-driven Middleware for Personal Area Networks

embedded with a microchip, and a slightly larger receiving device, the
researchers can transmit a pre-programmed electronic business card
between two people via a simple handshake [IBMR96]. The motivation
behind this work is the theory that the natural salinity of the human body
makes it an excellent conductor of electrical current. Zimmerman’s
proposed PAN solution takes advantage of this property and transports
data over an external electric field. It has been shown that data
transmission at around 2400 baud is currently possible, however the
theoretical maximum is considerably higher than this.

Whilst there is clearly a lot more work needed in this area before such
schemes are likely to be used in commercial devices, intra-body PAN
networks have a range of potential advantages mainly focussed around
the ability to make use of the human body as a transport mechanism and
effective hub for surrounding electronic devices.

2.5 Ad hoc networking

Giordano [GIOR00] describes ad
hoc networks as being typically
composed of equal nodes, which
communicate over wireless links
without any central control. In
an ad hoc network, all hosts are
required to support the network
and act as routers. This type of
behaviour is known as multi-hop
routing and enables hosts that
are not directly within range of each other to communicate via one or
more other intermediary hosts. An example of this is shown in Figure
2.5, where hosts A and B are not directly in range of each other but can
communicate via B, which acts as an intermediary router.

Ad hoc networking is of particular relevance to the construction of
personal area networks, since it is generally desirable for small handheld
devices to be able to communicate with other similar devices without the
need for the presence of fixed infrastructure such as DHCP addressing
servers and dedicated routers. Ad hoc networks can be delivered using
technologies such as Bluetooth and WiFi, which were considered earlier in
this chapter.

Figure 2.5: Multi-hop routing in ad hoc
networks [DORS98]

2.5.1 IETF MANET

The IETF’s working group on Mobile Ad hoc Networks (MANET)
[MANEWWW] is standardizing routing in ad hoc networks. The group
studies routing specifications, with the goal of supporting networks

30

Madhvani, N., Imperial College, London

scaling up to hundreds of routers. MANET’s work relies on other existing
IETF standards such as mobile-IP and IP addressing. Work produced by
the group to date includes specifications for the Ad hoc On-Demand
Distance Vector (AODV) routing and Dynamic Source Routing (DSR)
algorithms. These are optimized routing algorithms designed specifically
for use in mobile ad hoc networks.

2.5.2 Current research issues

Current research in this area falls into the following areas:

• Addressing – since there is no central server to allocate
addresses, the problem of address duplication is harder to solve.
Several proposals have been made, including an IP address
Autoconfiguration scheme from the IETF in which a host uses a
temporary IP address in the 169.254/16 range and broadcasts a
Route Request (RREQ) packet. If no response is received within a
certain period and several retry attempts have been made then
the requesting host assumes that the address can be taken as its
own. Otherwise the node randomly picks another address and
tries again.

• Routing – several groups are looking into innovative routing
algorithms [SCHU04] to take issues such as Quality of Service
(QoS) and congestion control into consideration. A primary goal is
of course to try and minimise the amount of routing overhead in
mobile ad hoc networks, to reduce power consumption.

• Resource Allocation – this area is concerned with how to price
scarce resources and how to allocate them in a way that is
considered to be fair.

• Security – Hubaux et al [HUBA01] comment that so far research
on mobile ad hoc networks has been focussed primarily on routing
issues and security has been given a lower priority. We take a
more detailed look at this important research area in the following
section.

2.5.3 Security in ad hoc networks

Security in a mobile ad hoc network is a major concern due to its
characteristics of open medium, dynamic changing topology, cooperative
algorithms, lack of centralized monitoring and management point, and
often lack of a clear line of defence. As Hubaux et al [HUBA01] point out,
the security requirements depend very much on the kind of objective for
which the ad hoc network has been conceived. Clearly, a military
network will have much more stringent security requirements than an

31

Policy-driven Middleware for Personal Area Networks

informal civilian one. They believe that there are effectively two types of
threats – attacks on basic mechanisms such as routing, and attacks on
security mechanisms such as the key management mechanisms.

Attacks on basic mechanisms are possible because nodes of ad hoc
networks cannot be assumed to be secured in locked cabinets; they
therefore risk being captured and compromised [HUBA01]. In addition,
all communications are performed ‘over the air’ so eavesdropping and
active interference may also be a problem. We also tend to assume that
nodes that carry out intermediary routing behave cooperatively, but in
reality this may not be the case, leading to an unfair allocation of
resources. Another serious issue relates to neighbour discovery – for
example, if a Bluetooth device is not properly configured then it may be
discovered and exploited by a rogue user. There are several ways that
we can protect against these types of attacks:

• tamper resistance – this may involve embedding cryptographic
data in a smart card, using the same principle as for GSM SIM
cards.

• routing-based mechanisms – a ‘watchdog’ node could be put in
charge of identifying nodes that misbehave, and a ‘pathrater’
which defines the best route circumventing these nodes. A
misbehaving node would effectively be locked out of the network
by its neighbours.

• neighbourhood – a solution based on pseudonyms has been
proposed by one research group [CAPK04]. If the identity of a
device changes for each session, then it becomes harder for an
intruder to track its location.

• service enforcement – the authors propose two charging models
based on a virtual currency known as a “nuglet”. Nodes
remunerate each other for the service they provide to each other.
By doing this, a node can make use of the network only if it also
contributes to the benefit of the community. Of course such a
scheme requires that the virtual ‘purse’ be cryptographically
protected to prevent cheating.

In terms of the second issue of security mechanisms, a major issue is
how two parties can establish a shared secret key. A common approach
is to use the Diffie-Hellman public key approach, where two parties
exchange random values, from which they both compute locally the same
key. The standard Diffie-Hellman proposal is open to active attacks such
as a ‘man in the middle’ however several modifications have been
suggested that counter this threat. In their paper, Hubaux et al propose

32

Madhvani, N., Imperial College, London

an alternative and novel self-organised Public Key Infrastructure (PKI)
scheme for the safe distribution of public keys.

2.6 Hardware devices & software platforms

Since the latter part of this project encompasses the development of a
‘proof of concept’ simulation using a selection of devices available today,
in this section we take a brief look at the most popular hardware and
software platforms available today in order to be able to arrive at
appropriate choices. The approach taken is to look at the key software
platforms and consider related hardware devices within those sections.

2.6.1 Symbian OS

Symbian was established as an independent
company in 1998 by Ericsson, Nokia, Motorola
and Psion in order to promote the
interoperability of data-enabled mobile
phones with mobile networks, content
applications and services. Symbian OS
phones tend to be more sophisticated than
ones that support J2ME and generally have
several megabytes of memory available
[NOKI03]. The two major hardware vendors
of Symbian OS phones are currently Nokia
and Sony Ericsson. Nokia’s Symbian-based
products include the 7650, 3650 and 6600
(see Figure 2.6). These tend to resemble traditional phones and have a
standard style keypad but a much larger display. Sony Ericsson
manufactures the P800 and P900 that are more like PDAs with phone
functionality. Both of these devices use a stylus-based ‘touchscreen’
input system.

One of the biggest advantages of Symbian OS is that applications can
access all hardware and software features of a phone, including SMS,
WAP, infra-red ports, Bluetooth and voice telephony features. This
provides developers with the ability to produce better-integrated and full-
featured applications compared to a platform such as J2ME. In addition,
Symbian OS applications are compiled to native machine code which
means that they typically execute quicker than Java-based platforms.

There are however a few possible drawbacks. Firstly, Symbian OS
applications can only be developed in the C++ language. Whilst stable
SDKs are available from Symbian, Nokia and Sony Ericsson, these
products arguably have quite a steep learning curve. Particular care must
be taken to deal with garbage collection and memory leak issues. In

Figure 2.6: Nokia
6600 running the new
Symbian OS v7.0
[MOBI03]

33

Policy-driven Middleware for Personal Area Networks

addition, whilst manufacturers that deploy Symbian OS make use of the
same underlying operating system, the devices may still be incompatible
since there are two different user interface standards in use today –
Series 60 that is typically used by Nokia, and UIQ that is typically used by
Sony Ericsson. Therefore applications developed for one platform are
unlikely to work properly, if at all on the other.

2.6.2 Java 2 Micro Edition (J2ME) and PersonalJava

Many new phones and PDAs have some form of Java support, meaning
that applications developed for Java can generally run on a wide range of
platforms. The most common Java implementation for mobile handsets is
Java 2 Micro Edition (J2ME). This is an open standard, easily learnable by
programmers with Java experience and provides many of the benefits of
Java technology such as automatic garbage collection. Java doesn’t of
course run natively however and is an interpreted language, therefore
applications are likely to be slower than those written in a language such
as C++. Most handsets support over-the-air (OTA) provisioning, meaning
that applications can be downloaded and installed to a user’s handset
within seconds.

The main problem with J2ME is that due to its extremely lightweight
nature, the API it provides to developers is somewhat limited. Only a
handful of classes are provided and it is either impossible or very difficult
to access features of the phone such as the IrDA and Bluetooth ports.
This makes J2ME an unpopular choice for applications where
communication with other devices is paramount. In addition, J2ME is
unsuitable for large applications – the limit tends to be just 64K and even
lower on many devices. Devices with J2ME support only tend to have
reasonably small displays which may also hinder the usefulness of this
technology.

An alternative to J2ME is PersonalJava, which provides almost all of the
functionality of standard Java 1.1 plus a few extensions from Java 2.
Although it is being phased out and there is a suggested migration path
from PersonalJava to J2ME with some new profiles that provide additional
Java classes, PersonalJava is still a popular choice for many applications
that are to run on devices that typically have more processing power and
memory such as PDAs. At the present time, use of the PersonalJava is
particularly advantageous since JVMs are available for Symbian OS,
Microsoft’s Pocket PC and Windows CE, PalmOS, Sharp Zaurus (Linux-
based) and several other types of devices [JAVA01]. Therefore
PersonalJava arguably provides the best cross-platform ability available
today.

34

Madhvani, N., Imperial College, London

An interesting research project (JXME) underway at the moment is
developing a JXTA implementation for J2ME [JXMEWWW]. This will
promote true peer-to-peer communication between devices running J2ME
and increase the range of opportunities that the technology provides. The
project is still in its early stages and the current implementation requires
the use of a proxy for communication. In addition only the HTTP protocol
is supported for communication – it is not possible to use TCP/IP sockets.
The group are currently trying to develop an efficient p2p implementation
given critical constraints such as small application size, limited memory
and CPU power.

2.6.3 Microsoft .NET Compact Framework

The .NET Compact Framework (CF) from Microsoft is part of the
company’s .NET initiative targeted at ‘smart devices’ such as mobile
phones and PDAs. The framework
provides developers with a rich API and
makes it relatively easy to develop
applications that allow devices to consume
XML Web services. A key benefit is that
applications developed for the .NET CF can
run on all devices that have the framework
installed, making them portable [YUAN04].
Whilst it may be necessary to develop
different user interfaces for different types
of types of devices, the underlying code
can remain the same. Also, since the .NET
CF is a cut-down version of the .NET
Framework, the same development tools
can be used. Visual Studio .NET 2003
provides a rich IDE with emulators and
debugging tools to speed up the
development process. Also, developers can choose to develop in any
language that is supported by the Common Language Runtime (CLR),
including C# and Visual Basic .NET. It is even possible to have a single
system consisting of components that were written in different languages!

Devices that support the .NET Compact Framework tend to be quite
sophisticated. Figure 2.7 shows a recent product from HP, the iPAQ
h5550 that includes Bluetooth, WiFi and biometric fingerprint recognition.
However, one of the main concerns with the use of .NET is that we are
effectively restricting ourselves to a single OS platform – Windows.
Whilst Windows CE and Pocket PC run on a multitude of devices from a
range of vendors, there are also a range of popular platforms in existence
which cannot run .NET code, such as PalmOS, Symbian and Linux-based
platforms. It could also be argued that the .NET CF is still in relative

Figure 2.7: HP iPAQ h5550

35

Policy-driven Middleware for Personal Area Networks

infancy and therefore in many ways Symbian OS and Java-based systems
are currently more flexible for certain applications.

2.7 Bringing it all together…

Whereas much of the content in the earlier parts of this chapter have
looked at specific areas of interest to this project, such as policy
specification and ad hoc networking, this section looks at a range of
current research projects that are bringing various aspects of these
technologies together and are specifically focussed on the interaction of
devices in a personal area network. The purpose of this exercise is to
understand what is considered to be ‘state of the art’ in this field of
research with the intention of discovering issues that it would be
worthwhile to investigate in this project.

2.7.1 MIT: Project Oxygen

Project Oxygen [OXYGWWW] at MIT, which has an objective of “bringing
abundant computation and communication, as pervasive and free as air,
naturally into people's lives” has already demonstrated the benefits of
self-management in a range of applications. They distinguish between
basic physical and basic virtual objects. The former senses or actuates a
physical entity, whereas the latter collects, generates and transforms
information, e.g. extracting information from an incoming electronic form
and sending the results on to a particular device. The project also
advocates the use of a scripting language to enable the tasks that need to
be automated to be specified easily and rapidly.

It is suggested that in the future computing will be human-centred and
freely available everywhere. Users will not need to carry their own
devices around with them and will instead make use of configurable
generic devices that will adapt to their needs. They categorise these
devices as:

• Enviro21s (E21s) – these are embedded devices which may be
installed in homes, offices and cars. They communicate with each
other and with nearby H21s through dynamically configured
networks (N21s). The main purpose of an E21 is to sensors and
actuators etc to monitor and control the environment. E21s may
for example be embedded in walls and may also provide large
amounts of computational power that nearby H21s can be use to
offload work.

• Handy21s (H21s) – these are anonymous handheld devices.
Rather than storing large amount of local state information, H21s
configure themselves through software to be used in a wide range

36

Madhvani, N., Imperial College, London

of environments. H21s typically have less computational power
than E21s since they tend to be smaller and use battery power.

• Networks (N21s) – these are built around the ad hoc paradigm.
Project Oxygen defines these as ‘flexible, decentralised networks
that connect dynamically changing configurations of self-
identifying mobile and stationary devices’. N21s deal with issues
of resource and location discovery and security. Domains are
referred to as ‘collaborative regions’ – computers and devices may
belong to several regions at one time. Region membership is
dynamic and devices may enter and leave different regions as they
move around.

The area of greatest interest to us is that of software policies. There are
two key layers in the architecture:

• abstraction – these characterise components that carry out
computations and objects used in computations. The abstractions
provide applications with specialised interfaces that avoids them
having to talk directly to the underlying layers.

• specifications – these make abstractions explicit and contain
information about the modules and capabilities available locally,
sources for obtaining code across the network and details about
module dependencies.

The strategy used by Project Oxygen is to hold code, data objects and
specifications in a common, persistent object-oriented store that supports
transactional semantics for concurrent access. This enables users to
interact with software and data from any location by bringing applications
‘just-in-time’ to handheld devices.

2.7.2 AMUSE

The AMUSE (Autonomic Management of Ubiquitous Systems for e-Health)
project is investigating self-managing adaptable infrastructures to support
e-Health and e-Science applications. In the project proposal [LUPU03],
the authors comment that whilst a range of advanced devices for
enhancing healthcare are now available, many of which have wireless
communication capabilities, there is little or no software infrastructure
currently available that allows them to work together in a configurable
and adaptable manner. Body sensors are also becoming increasingly
smaller in size and this is increasing the opportunities for a ubiquitous
computing environment that can significantly improve the quality of
healthcare services provided to patients. However in order to achieve this
goal, the management functionality needs to be hidden, with autonomous
devices managing their own evolution and configuration changes without

37

Policy-driven Middleware for Personal Area Networks

the need for user intervention. The paper suggests that the issues
surrounding self-management are applicable not only to healthcare
applications, to which the AMUSE project is focussed, but also to other
areas such as embedded devices in the home.

The project advocates the concept of a self-managed cell (SMC) which
consists of a set of hardware or software components which function
autonomously and are therefore capable of self-management. It is
proposed that a cell should contain a certain set of mandatory services
such as service discovery, event correlation and policy
management. The policies specify actions that should occur in response
to changes of state either in a managed object or in the environment. A
cell is a ‘closed-loop’ system where state changes lead to events which
can trigger actions that can modify the state of the system, and possibly
lead to new events. An example of a self-managed cell is shown in Figure
2.8. We observe that interaction between components in the cell takes
place via a common asynchronous event bus. In terms of
implementation, this may be delivered using an event-oriented
middleware such as Elvin that we considered in some detail earlier in
Section 2.3.4.

Several of the issues being researched by AMUSE are of very specific
interest to this project, including:

Measurement
Adapters

“System” Under Test

Provisioning
Analysis,

Simulation,
OptimizationMeasurement

“System”
Configuration

Service Goals
System Policy

Policy
Management

Topology,
Other

Event Bus

Trends &
Prediction

Raw
Measurement

Management
Application

Measurement
Adapters

“System” Under Test

Provisioning
Analysis,

Simulation,
OptimizationMeasurement

“System”
Configuration

Service Goals
System Policy

Policy
Management

Topology,
Other

Event Bus

Trends &
Prediction

Raw
Measurement

Measurement
Adapters

“System” Under Test“System” Under Test

Provisioning
Analysis,

Simulation,
OptimizationMeasurement

“System”
Configuration

Service Goals
System Policy

Policy
Management

Topology,
Other

Event Bus

Trends &
Prediction

Raw
Measurement

Management
Application

Figure 2.8: An example of a self-managed cell (SMC) [SVEN03]

• What management functionality a self-managed cell needs to be
provide, and how the management components should behave.

38

Madhvani, N., Imperial College, London

• How to use contextual information, i.e. information from the
surroundings.

• Distinguishing between components in a cell that should be
mandatory and optional. In addition, making the SMCs extensible,
so that they can be specialised to particular environments.

• Defining how cells should interact with each other. AMUSE
suggests 3 types of interaction: composition (composed SMCs
form a single administrative domain, similar to subtyping in an OO
environment), federated (peer-to-peer interactions between SMCs
to provide integrated services), and layered (hierarchical layering
of services analogous to the OSI model).

• Determining how policies should be expressed, deployed and
enforced.

• How a cell should behave and adapt when new resources and
services are dynamically added or removed. In addition, we are
interested in how these entities can be discovered.

• Instantiation of an SMC and the deployment of its components
across many distributed components.

The AMUSE project was only instantiated a few months ago and is still in
its early stages, however concepts such as the ones defined above
provide us with helpful pointers to the types of current research issues
that will require consideration in this project, in order to develop a policy-
driven middleware for personal area networks. An area that we will
certainly give particular attention to in this project is how we can use
policies to not only specify interactions between devices, but also how
policies can be used to define the behaviour of management components,
making the architecture highly flexible.

2.7.3 Autonomic computing

Autonomic computing is a term coined by IBM to describe a computing
system that possesses at least one of the following four attributes
[BANT03]:

• Self-configuring – automates the installation and setup of its
own software.

• Self-healing – monitors its own platform, detects errors and
automatically takes remedial action as necessary.

• Self-optimising – optimises use of its own resources.

39

Policy-driven Middleware for Personal Area Networks

• Self-protecting – automatically configures and tunes itself to
achieve security, privacy, function and data protection goals.

Autonomic functionality can be
implemented at different levels,
including locally e.g. power
management, within a peer group
e.g. knowledge-sharing in a “grid”
computing environment or
network-based e.g. remote
backup. Bantz et al propose a
general architecture for autonomic
systems and Figure 2.9 shows the
building block, known as an
autonomic element (AE). Each AE
consists of an autonomic manager
(AM) and a set of managed components. Managed components
communicate their events to the local AM. The AM makes decisions based
on policies, facts and rules which are held in a database as well as input
received from the managed components, and communicates directives
and hints to them.

An interesting approach to the problem of exerting control over objects in
a hierarchical system is proposed. Two styles of control are suggested,
delegation and guidance. In the former, a local AM passes control of some
of the resources it manages to a superior, whereas in the latter, a local
ATM receives information from its superior and implements then with
respect to its own resources. Only one AM is ever in direct control of a
resource. Control over a selected set of resources can be delegated to
another manager through the use of client virtualisation, in which we can
define virtual AMs that group resources together and link them to a
remote AM.

There are a number of other useful sources of information in this arena.
Dr Mitchell Waldrop [WALD03] in his recent article on Autonomic
Computing: The Technology of Self-Management, refers to a “continuous
control loop”, i.e. each component of the system (hardware and software)
should now only know how its assigned tasks but should also have
internal mechanisms that constantly monitor its own operation, and make
corrections as needed. A key feature of such a scheme is that each
device would handle as much as possible locally – and yet still have the
means to call on the larger system when it needs help. Dr Waldrop also
suggests that the scheme could be recursive, so that when the call for
help reaches that system, it may decide to call for help to a still larger
system for help.

Figure 2.9: An autonomic element –
the basic building block of autonomic
systems [BANT03]

40

Madhvani, N., Imperial College, London

2.7.4 Summary of findings & directions for focus

In this section we have looked at a selection of related research projects.
Whilst a considerable amount of work has already been carried out in the
more general areas of device interaction in ad hoc networks and
autonomic computing, there has been very little focus to date on
developing a common policy-driven middleware for personal area
networks. For example, whilst MIT’s Oxygen project proposes a
ubiquitous human-centred architecture in which the management
functions are effectively hidden from users, the emphasis is on allowing
users to interact with the system using speech and vision techniques, in a
similar way to how they might interact with other users. In addition, the
project focuses on allowing users to pick up “anonymous” handheld
devices which adjust to their needs for a relatively short period of time,
rather than personal devices such as mobile phones that tend to be
owned by a single user. In this project, we wish to tackle the issues
surrounding the self-management of consumer devices that can
communicate over a very short distance rather than the transfer of user
data between such devices or human-computer interaction.

The AMUSE project is much more closely aligned to this work. Whilst
AMUSE is looking at solutions for e-Health, the principles behind the self-
managed cell can be equally applied to consumer devices in personal area
networks. It therefore seems appropriate to utilise the SMC concept as a
basis for this work, however a number of additional issues have been
identified which will be given more specific focus:

• Prerequisite cell components – a core set of components needs
to be defined for our architecture, specific to the needs of
consumer personal area networks. The behaviour of these
components also needs to be specified and the interactions
defined.

• Device detection/discovery – whilst work has already been
done in this area, the discovery of devices is of particular
importance in personal area networks, since devices may be
frequently entering and leaving them. How do we detect that
devices have left the network and when should we inform other
interested parties about this?

• Context-sensitive behaviour – external events should trigger
state changes as well as internal events generated by other
components in the system. We consider variables such as time,
temperature and location as external events. In addition, it should
be possible to evaluate policy conditions against the current state
of external variables, to determine if those policies should run
when triggered by another event.

41

Policy-driven Middleware for Personal Area Networks

• Efficient event generation and consumption – since the
devices we are targeting will typically be battery-powered, we will
investigate ways of minimising the management traffic. For
example, it is inefficient for devices to have to continually transmit
details of their state, if that information is not required by other
entities.

• SMC policy – earlier in this chapter, we considered obligation and
authorisation policies, such as those implemented by the Ponder
language (see Section 2.2.1). Rather than simply using these
policies to define interactions between devices, we will look at how
we can specify SMC policies that control the behaviour of the
system, e.g. to define the behaviour of the device discovery
mechanism. The intention is to make our proposed architecture as
flexible and configurable as possible.

• System policy vs user policy – we will divide policies into these
two distinct categories. System policies tend to be relatively static
and embedded at the time of manufacture, or held in flash
memory. These policies define standard behaviour towards other
devices and in addition specify the capabilities of user policies. For
example, system policies may state that when a text message
arrived on a mobile phone, it should also be made available on all
PDAs within the cell. User policies allow users to customise their
devices to an extent, as defined by the corresponding system
policies. Users may wish to override specific behaviour to meet
their needs. For example, a user policy may be used to define a
call diversion from one mobile phone to another when the battery
of the first device is about to run out. The user specifies the
policy, since they define where calls are diverted to.

42

Madhvani, N., Imperial College, London

3 Project Specification
This chapter specifies the requirements for our policy-driven middleware
architecture. We first define the scope of this work to narrow down the
problem domain and then consider the types of usage interactions that
will be made with the system. This work is continued in Appendix A1,
where we provide a list of system requirements.

3.1 Scope

From the background research that has been carried out into related
technologies and projects (see Chapter 2), we observe that the field of
policy-driven middleware is quite a broad one, and there are many
potential issues that we could investigate and attempt to provide
solutions for in our architecture. Due to time constraints, this project is
unable to address all of these issues, and it is therefore important to
formalise the scope of this work as follows:

• Language-independent architectural design – the main
deliverable of this project is a detailed design for a flexible and
extensible middleware that is not tied to a specific choice of
implementation language or tools. The second deliverable will
consist of an implementation based on this design, as a
demonstration of the capabilities of the middleware.

• Device grouping and profiling – we will define how consumer
devices in a personal area network can be grouped by common
functionality, how this functionality can be defined, and how
devices can belong to more than one group or domain.

• Device discovery – the work of discovering devices that have
entered a cell, and those which have disappeared will be the onus
of a discovery manager component rather that functionality that
each device needs to implement. We will define the behaviour of
this component.

• User customisation of behaviour – our middleware will support
the definition of policies that allow users to customise the
behaviour of the system to the required level.

• Policy syntax – we will define the notation for policies under our
architecture and provide examples of acceptable policies for a
selection of scenarios.

• Efficient event bus – we will look at the problem of passing
events between devices in an efficient manner, with particular
attention to reducing the amount of management (overhead)
traffic.

43

Policy-driven Middleware for Personal Area Networks

• Event correlation – we consider how events can be aggregated
and the specification of policies that can use these aggregation
features, e.g. carry out a particular action if event x has occurred
more than 5 times in the last 60 seconds.

The following issues are considered to be out of scope:

• Policy compilation – whilst we will specify syntax for policies
used in our architecture, and provide examples of valid policies,
we will not implement a compiler or modify existing compilers to
generate executable code from these.

• Cell interaction – we do not consider how cells can be placed
together to form larger structures, or how they may be able to
work co-operatively in a peer-to-peer fashion. These areas are
being investigated as part of the AMUSE project.

• Mechanisms for transfer of user data – we are concerned
specifically with event-based action-condition-effect interaction
between devices in a personal area network. We will not consider
methods of sending other types of data between devices, e.g.
music files. These are wider mobile ad hoc networking issues.

• Intelligent human-computer interaction techniques – we will
not implement interaction between users and the system using
speech and vision techniques. A key objective of this project is
that the system should work in the background, with minimal user
intervention.

• Design of context sensors – whilst we will consider external
context-sensitive events, we will not specifically consider the
design of sensors that can provide this functionality. Our flexible
and extensible architecture will however allow for new types of
context devices to be added.

• Security & trust issues – there are many issues in the area of
security and trust including building a security model using
authorisation policies. However our goal is to develop a simple,
working policy-driven middleware architecture that can later be
extended to incorporate security features as part of future work.

• Low-level ad hoc networking – for example, we will not
consider optimal algorithms for multi-hop routing. Much work has
already been done in this area. We will utilise an ‘off-the-shelf’ ad
hoc networking solution.

44

Madhvani, N., Imperial College, London

3.2 Use cases

The following use cases highlight the desired functionality of our
middleware solution. Note that since our architecture is inherently
designed to involve little human intervention, many of the use cases refer
to actions performed by devices. The concept of use cases comes from
the Unified Modelling Language (UML), though we have chosen not to use
the full notation; we are more concerned with capturing the types of
activities that devices may perform, so that we can be sure that they are
included in our design, which is presented in the following two chapters of
this report:

• Cell instantiation – cell management components must be
started in the correct order, before devices can be allowed to
connect to the cell.

• Discovery of a new device – a discovery server will check for
new devices on a regular interval. If new devices are found, it is
necessary to inform the domain system about these changes.

• Communication with a device lost – the discovery server
should check that devices that appear to be connected to a cell are
alive and contactable. If communication is lost, the domain
system should be informed.

• A device changes state – a state change should result in one or
more events being placed on the event bus. However if there are
no consumers listening, then we would prefer that these events
were not put onto the bus for reasons of efficiency.

• A device subscribes to an event – the events engine must
register the subscription and ensure that devices producing this
event are notified that the quench should be lifted.

• A device unsubscribes from an event – the events engine must
remove the subscription and inform producers of that event that
the number of consumers has dropped by one.

• A user modifies one or more user policies – user policies allow
users to customise aspects of the system. Upon loading of user
policies, the system should check that the user is authorised to
carry out that action.

• System policies are modified – these modifications take place
via firmware updates. The system must be shutdown and brought
back up for this activity.

45

Policy-driven Middleware for Personal Area Networks

• SMC policies modified – these are configuration policies. The
system should be fully shutdown before making any modifications,
and should be brought back up once the changes have been made.

• Cell standby – this mode allows the cell to go into a ‘sleep’ state
such that it can be resumed with minimal effort. The data for all
the key management components must be written out to disk and
held in a place that can be accessed when the system is restored.

• Cell shutdown – this is a full shutdown of the system. No data is
written out, and a restart after a full shutdown will result in
policies having to resubscribe with the events engine.

3.3 Summary

In this section we have defined the scope for our middleware architecture,
by distinguishing between the areas that we will focus on, and those that
will not be considered as part of this work. In addition, we have looked at
how the system should behave in response to actions carried out by the
‘users’ of the system.

46

Madhvani, N., Imperial College, London

4 Architectural Design Overview
This section is the first of two that presents the design for our proposed
middleware. The purpose of this chapter is to provide a high-level design
for the whole system, including the key components, their interactions
and expected behaviour. The material here forms the foundation for the
detailed architectural design, which follows in the next chapter.

4.1 Self-managed cell structure

Figure 4.1 shows a conceptual overview of a self-managed cell (SMC)
under our proposed architecture.

Our self-managed cell is based on the concepts that have been proposed
by the AMUSE project (see Section 2.7.2). The cell consists of a set of
management components along with their respective data stores, policy
management agents that are responsible for executing one or more
policies and a set of hardware devices that form a Personal Area Network.
Note that we have shown the PAN devices as being part of the cell itself,
since this is a conceptual model of the system. In an actual
implementation, the cell would contain adapters that interact with their
respective hardware devices. The key components are as follows:

Policy Management
Agents

Events Engine

Discovery Server

PAN devices

Domain Server

Event Bus

Policy Store

PMA PMA

Subscribers &
Subscriptions

Context &
Correlation Engine

Domain
information

Configuration
data

Self-Managed Cell

Aggregation
store Context data

Figure 4.1: Self-managed cell, consisting of management components, devices and an asynchronous
communication bus.

• Asynchronous event bus - At the heart of the self-managed cell
is an asynchronous event bus that is used as the means of
communication between all entities in the cell. Note that devices

47

Policy-driven Middleware for Personal Area Networks

do not communicate with each other directly, and all
communication takes place through the generation of events that
are placed on the event bus.

• Policies - Policies are stored as part of the cell and consist of
system policies and user policies. The system policies are those
that are not user configurable and are typically semi-static, i.e.
they tend only to be modified by updates to the firmware. User
policies enable extra configurability, as permitted by system
policies. The cell also contains a series of policy management
agents (PMAs) that are responsible for executing one or more
policies, and it is these entities that effectively manage the
policies. A PMA evaluates each policy that it is responsible for at
start-up, and translates the policy data into an event subscription.
The subscription is registered with the events engine, which then
notifies the PMA if an event meeting those requirements occurs.
This prevents the PMA from having to constantly poll to check the
state of devices. In a simple model, there would be a one-to-one
relationship between a policy and a PMA.

• Domain server - The domain server maintains a domain structure
which essentially enables for devices to be grouped based on the
functionality that they offer. Policies can refer to a domain rather
than a single entity, and in this case the domain server is
responsible for ensuring that the relevant actions are carried out
on each of the members of that domain, including propagation
through to any sub-domains if they exist. As well as devices, the
domain server could also be used to organise applications,
services, users, policy objects and other resources.

• Discovery server - The discovery server maintains a list of
devices attached to the cell and regularly sends them an “are you
alive” event which it expects to receive a response to. If a
response does not arrive, retries are made until a maximum
number of attempts is reached. The device is then removed from
the list of active devices, and an event is placed onto the bus to
inform the domain server that the device should be removed from
any domains of which it is a member. New devices are found by
the discovery server through a broadcast event that is picked up
and responded to by devices that are not attached to a cell. The
device is then added to the list that the discovery server
maintains, and an event is placed on the event bus for the domain
server to be able to add it into the necessary domain(s). The
discovery services, could also potentially be used to discover new
services, users, and other resources, and act as an “ORB” or
“registry” for applications.

48

Madhvani, N., Imperial College, London

• Context & correlation engine - The context & correlation engine
(CCE) is a supporting component that enhances the usefulness of
management policies. In terms of context, the engine regularly
updates its own store of information on items such as time and
location, as well as direct readings taken from any context sensors
that are in range. Devices can request that the CCE provide data
for a particular context value or set of values via an event, and the
information is returned as an event as well. The correlation
functionality allows for ‘derived’ events, i.e. events which are
based on other events. An example is an event A that occurs if
event B occurs at least 5 times within the space of 10 minutes.
These aggregate events are also defined by policies; however the
CCE is responsible for carrying out the aggregation and raising
events when the relevant conditions are met.

Here, we have considered the basic structure of a self-managed cell and
its key components. The following sections of this chapter describe
specific aspects of the middleware architecture in more detail, including
the rationale for design decisions that have been taken.

4.2 Policies and policy management

We will use the Ponder policy specification language (with a few of our
own extensions) to specify policies in our system. Whilst the deliverables
of this project do not include a Ponder compiler to translate our policies in
to a code-based implementation, the notation provides a concise means
to capture the policy behaviour.

4.2.1 System policies for device behaviour

The main type of policy in our architecture is the system policy. As
described earlier, these policies will be semi-static and the intention is
that they will be stored in flash memory as part of the cell management
firmware. We use a form of obligation policy to define each policy as
follows:

inst oblig policyName “{”
on e = eventName;
subject domainPath ;
target t = domainPath ;
do actionList ;
[when constraintExpression ;] “}”

Each policy has a unique name policyName and is a member of a group of
policies. The group is defined using the same domain structure as we use
for devices, however policies have their own hierarchy, e.g. /policies. The
policy subject refers to the domain to which the policy belongs and the

49

Policy-driven Middleware for Personal Area Networks

target refers to the domain on which the actions are to be performed.
The do value is a list of actions to be carried out, separated by commas.
The when clause is optional and is used to specify conditions such that
the actions are only carried out if those conditions evaluate to true.

The constraintExpression is written using UML’s Object Constraint
Language (OCL) notation, which is a superset of ordinary Java conditional
notation. We can make use of e and t to refer to the event and target
respectively. For example:

when (e.status == 1 || e.status == 2) && (t.batteryPercent < 60)

The “e” conditions are evaluated on the event itself and are used to build
the subscription that is sent to the events server – this is discussed in the
next section. Conditions with a “t” prefix are evaluated on the target and
the do actions are only carried out if they evaluate to true. Policies that
use context information and correlated events are discussed later in
Section 4.6.

Figure 4.2 shows a sample domain structure. The policy is a member of
the /policies domain and acts on the /devices/cellular domain. The policy
management agent (PMA) collaborates with the events engine and is

/devices /policies

/

/devices
/cellular

/devices
/pda

member of

m
em

be
r o

f
m

em
be

r o
f m

em
be r of

/policies
/music

on
incomingCellul

arCall

Policymember of(subject)

PMA

ex
ec

ut
ed

 b
y

ta
rg

et

Figure 4.2: A sample domain structure with devices and one policy

50

Madhvani, N., Imperial College, London

notified when the event has occurred. This corresponds to the following
policy definition:

inst oblig incomingCall “{”
on e = incomingCellularCall;
subject /policies ;
target t = /devices/cellular ;
do actionList ; “}”

In this example, there are no when conditions, however if these did exist,
the PMA would first evaluate these and then carry out the actions if
appropriate.

The policy management agent is not defined in the policy itself and it is
the responsibility of the agent to activate and manage any policies that it
is in control of. A policy is simply a data object and cannot execute on its
own. Most modern policy systems such as future implementations of
Ponder will disseminate and/or exchange policies using XML. The reason
why we distinguish between a policy and a policy management agent is
that the latter can manage more than one policy. A policy management
agent is envisaged to be a concurrent process or thread when
implemented and it is possible to use this feature to form a trade-off
between the number of threads/processes and the level of concurrency.
In an environment where it is inefficient to have too many threads, we
may choose to have one PMA responsible for a set of policies. However it
should be noted that the mapping of PMAs to proceses/threads is not the
overriding concern when writing policies. This is more of an
implementation issue.

4.2.2 User policies for customisation

User policies allow users to customise the behaviour of the system by
replacing policies or defining new ones. However, it would be unwise to
allow users to be able to modify all policies, since this may have an
adverse impact on the overall system. Positive authorisation policies
should therefore be defined using the following syntax:

inst auth+ policyName “{”
subject domainPath ;
target domainPath ;
action installPolicy(p) ;
[when constraintExpression ;] “}“

The subject specifies the source of the request, e.g. members of the
domain /devices/cellular. The target is the domain at which the policy is
conceptually enforced, e.g. by members of the domain /policies/music.
In this case, we enforce the installPolicy(p) action. The action is the
method that requires an authorisation check on whether it is permitted or

51

Policy-driven Middleware for Personal Area Networks

not permitted. The when clause can be used to specify additional
restrictions. For example, if it should only be possible to override
incomingCallPolicy or incomingTextMessagePolicy in the target domain,
then we should specify a when clause of target.member ==
“incomingCallPolicy” || target.member == “incomingTextMessagePolicy”.

The syntax for user policies is the same as for system policies discussed
in the previous section. The addition of a user policy that has the same
name as a system policy causes the system policy to be “shadowed” – the
user policy therefore takes precedence.

4.2.3 System configuration policies

Configuration policies are used to define the behaviour of internal aspects
of the system, rather than to define interactions between devices. We
propose the following syntax:

inst config componentID “{”
 (variable value ;)* “}“

Each component in the system should have a unique componentID and
the policy consists of a series of name/value pairs. The component reads
in the policy upon start-up and is configured based on that data.

An example of a configuration policy is:

inst config discoveryServer “{”
 pollInterval 30000 -- in milliseconds
 timeToLive 10000 -- in milliseconds
 maxRetries 5 “}“

We specify the configurable variables as part of the documentation for
each component.

4.3 Events system

In the background study on middleware (see Section 2.3), we considered
object-based, event-based and message-based approaches. The event-
based method has been chosen for our architecture since we require a
lightweight, asynchronous mechanism for communication between the
devices and management components in our self-managed cell. A
request-reply scheme may impose a higher overhead, due to the need to
acknowledge requests, and less flexibility due to unnecessary blocking of
threads/processes. In addition, our primary goal is to minimise the
latency of the system, since events that arrive even slightly late are to be
of very little use. The queuing of messages, and ensuing in-sequence
delivery is not as critical, hence the choice of an event-based approach
rather than a message-based one.

52

Madhvani, N., Imperial College, London

The events bus forms the backbone for our distributed cell architecture.
Each device and management component can execute independently, and
may potentially be implemented in different programming languages and
may even run on different hardware platforms. Each device simply
requires an adapter that will allow it to subscribe to events, place events
onto the event bus and be notified when relevant events occur.

Rather than implement our own event bus and engine, we will use DSTC’s
Elvin product (see Section 2.3.4) which provides an engine to store and
manage subscriptions, and client adapters that can connect to a range of
popular programming languages including C, Java and Python.

We make the assumption that Elvin’s event delivery system is reliable,
however the product does not provide a guarantee of this. The one-shot
paradigm and desire to operate as fast as possible may occasionally result
in the loss of events.

4.3.1 Subscription mechanism

Figure 4.3 illustrates the subscription mechanism used in our architecture,
with 2 policy management agents as an example.

Each PMA object is a consumer of events and translates the policies it is
managing into subscriptions. The ‘subscribe’ action sends the
subscription across to the events engine which stores it locally. A
consumer can only receive events if it is subscribed to them.

In order to be able to express how a subscription can be made, we first
need to consider the format for events. Note that Elvin refers to events
as ‘notifications’. Each event consists of a mandatory block, containing
the eventName and a generation timestamp timestampGen which is the
time at which the event was created. In addition, there are one or more
name/value pairs for the event’s data:

PMA

PMA

Events engine

subscribe

subscribe subscriptions
store

incom
ing event

incom
ing event

incom
ing event

Figure 4.3: PMAs create subscriptions which are registered with the Events engine.

53

Policy-driven Middleware for Personal Area Networks

eventName: “eventName” } mandatory
timestampGen: YYYYMMDDHHMMSS }

dataVariable: dataValue } 1 or more

The translation from policy to subscription is then done by firstly
expressing the name of the event that we wish to be notified about:

on eventName (eventName == “eventName”)

Next, the when conditions in the policy are analysed, and those that refer
to the event, i.e. with a prefix of “e” are translated by dropping the prefix.
For a simple condition:

e.condition == “value” (condition == “value”)

Logical AND operations (&&) are then inserted between each of the
clauses. For example:

(eventName == “onCellularCall”) && (status == 1 || status == 2)

Note that conditions on the event are evaluated by the events engine,
rather than the PMAs, since these can be included as part of the
subscription. The events engine only sends the event across if it matches
the conditions specified in the subscription.

4.3.2 Event generation & quenching

Devices that generate events onto the event bus are known as
‘producers’. Producers do not have to worry about the destination of an
event – it is up to the events engine to pick up the event and work out
which subscribers it should be sent to, depending on the conditions
specified in the subscriptions. This decouples the consumers from the
producers. As described above, an event has a very simple structure.

Figure 4.4: The events engine forwards events based on subscriptions.

54

Madhvani, N., Imperial College, London

The only mandatory fields are eventName and timestampGen which
represent the name of the event and the time at which it was generated
respectively. Figure 4.4 shows an example of a scenario where two
devices both send different events to the events engine. The events
engine maintains a list of subscriptions and therefore only forwards those
events on to those subscribers – in this case a single PMA. The other
PMAs do not receive any notification of these events.

In our requirements for this system, we stated that power consumption
must be minimised wherever possible, since the devices in a personal
area network are likely to be battery-powered. In order to meet this
objective, a ‘quenching’ mechanism is used in our architecture. Elvin
refers to quenching as ‘reverse subscriptions’. Devices that generate
events receive quench events from the events engine when the interest in
that event changes, i.e. when a PMA subscribes or de-subscribes from it.
The device maintains a counter for each event that it is capable of
generating and updates these based on the quench events. If a counter
is zero, then the event is disabled, otherwise events are written onto the
bus as normal.

Figure 4.5 shows an example of quenching. A policy management agent
subscribes to an event textMsgAlert and this causes quench events to be
sent to two devices that are producers of those events. The devices are
informed that the number of consumers has increased by 1, and they
update this in their own data store. The events engine knows to only
send the quench events to those devices since they have set up quench
reverse subscriptions upon initialisation, which inform the events engine
about the names of events that can be produced by that device.

Figure 4.5: A new subscription causes quench messages to be sent to producers of those events.

55

Policy-driven Middleware for Personal Area Networks

Quenching is a relatively new feature that is available in more recent
versions of Elvin. In the detailed design we consider how this feature can
be integrated in to our middleware.

4.4 Domain management agents

The domain structure provides the ability to group policies and devices in
a hierarchical fashion. We could also use the domain system to group
applications and services etc. Earlier, in Figure 4.2, we observed that
devices can belong to one or more domains. If a device belongs to two
domains, for example, it will be affected by policies that act on both of
the domains. The membership of a domain is stored within its Domain
Management Agent (DMA). The DMA is the central point of interaction
between other entities and the members of the domain. Actions from
Policy Management Agents (PMAs) to a domain are received by the DMA
which carries out the action on all members of the domain. Figure 4.6
shows an example, where actions from a PMA arrive at the
/devices/cellular DMA and are sent to the two devices within that domain.

Figure 4.6: An example showing a domain and its sub-domain. Actions
performed by PMAs are sent to the devices in the domain as well as to
devices in all sub-domains.

56

Madhvani, N., Imperial College, London

In addition, the DMA propagates the action on to its subdomain
/devices/cellular/3g, whose DMA in turn carries out the action on the
single device contained within that domain. Note that each domain has
its own DMA – there is a 1:1 relationship between these objects.

The actions sent between the PMA and a DMA, and from the DMA to its
devices are also transmitted using the common event bus, rather than via
remote procedure calls or a similar mechanism. We have chosen this
design for simplicity. An action is therefore simply an event, but with a
slightly different structure:

eventName: “action”
actionTarget: devicePath | domainPath/DMA
actionConditions: “conditionalExpressionList” } optional
actionData: “actionList”

The system reserved eventName “action” specifies that this event is an
action that is to be performed on devices. The actionTarget specifies
where the action should be delivered – this is either the full device path,
e.g. /devices/cellular/7600PHONE or the DMA, e.g. /devices/cellular/DMA.
The actionConditions is an optional name/value pair that is used to
specify a conditional expression that should be tested at the device in
order to determine whether or not to carry out the action. The actionData
specifies a list of actions that should be executed.

Each DMA and device must therefore subscribe to the “action” event in
order that they are able to receive these events. An example of such a
subscription is:

eventName == “action” && actionTarget == “/dev/cellular/7600PHONE”

A DMA would subscribe in a similar fashion, using “domainName/DMA” as
the actionTarget.

The actionConditions are only evaluated by devices and not by DMAs. If
the actionConditions clause evaluates to false, then the action is simply
discarded without being carried out.

The membership of a domain is altered by the use of addDevice and
removeDevice events that are sent by the domain server to a DMA.
These simple events contain a deviceID that is unique to each device.
Further details on the device addition and removal process can be found
in Section 4.5.1.

Note that we have assumed that the events system is reliable and that
messages are not lost during transmission. However in reality this may
not be the case. The DMAs (and PMAs that we considered earlier) may
need to be able to operate in the presence of lost events. In addition,

57

Policy-driven Middleware for Personal Area Networks

when a DMA carries out an action on a domain, the actions do not take
place across the multiple affected target objects in an atomic manner.
Just as in the databases arena we aim to adhere to the ACID properties, a
possible extension to this work may look at how we can define similar
properties for our domain.

4.5 Device discovery

The discovery service stores the following data internally for each device
that is within its range:

Variable Description
deviceID The unique ID of the device – in a WiFi environment,

this will be the MAC (Media Access Control) address.
connectedSince A timestamp representing the point since which

constant communication with the device has been
maintained. Format YYYYMMDDHHMMSS.

numRetriesLeft An integer representing the number of retries
remaining to contact this device, before it is
considered to be “lost” from the cell. This value is
decremented each time a “ping” request is sent and
no reply is received.

Figure 4.7 shows the events that are generated and received by the
discovery server. Information about new and lost devices is
communicated to the domain server via events that the discovery server
places onto the event bus.

PAN devices

Discovery
Server

event whoIsAlive

event iAmAlive

Domain
Server

event newDevice

event lostDevice

domain
info

add/remove
devices

devices in
range

update
data

Figure 4.7: The discovery server checks for devices in range and communicates this
information to the domain server.

The following pseudo code illustrates the behaviour of the discovery
server:

until (process terminated) do {
 send event whoIsAlive
 sleep for timeToLive

58

Madhvani, N., Imperial College, London

 for each event e of type iAmAlive in received
 events {
 if e.deviceID exists in data {
 // Existing device
 set numRetriesLeft to maxRetries
 } else {
 // New device
 create new data entry for device
 set deviceID to e.deviceID
 set connectedSince timestamp to CURRENT
 set numRetriesLeft to maxRetries
 // Inform domain server about new
 device
 send event newDevice(deviceID,
 e.profile)
 }
 }
 // Scan through the devices to see if any should be
 removed
 for each device d in data store {
 if d.numRetriesLeft == 0 {
 // Inform domain server about removal
 send event lostDevice(deviceID)
 // Destroy data we hold on this device
 delete d
 }
 }
 sleep for pollInterval
}

The pollInterval, timeToLive and maxRetries variables are defined by a
configuration policy, as described in the next sub-section.

4.5.1 Device profiles

Devices should subscribe to the whoIsAlive messages in order that the
discovery server can contact them. The iAmAlive event that the devices
generate in response should contain the deviceID as well as the profile
string. We define a profile string, as a list of profiles that the device
supports. For example, a smart phone may have a profile string of:

“pda;phone;music”

The profiles are semi-colon delimited. The profile string is sent to the
domain server as part of the newDevice event and it is used to determine
which domain(s) the device is placed in. There may be a one-to-one
mapping between profiles and domains, however a more complex
relationship is possible if required. For example, rather than place the
device above in three domains /devices/pda, /devices/phone and
/devices/music, the domain server may decide to place the unit in a
single domain /devices/smartphones. These decisions are made by a set
of rules that are held by the domain server.

59

Policy-driven Middleware for Personal Area Networks

Once the domain server has decided which domains the new device
should belong to, an addDevice event is sent to the relevant DMAs. This
event includes the deviceID that is used as a unique reference to the
device.

4.5.2 Discovery server configuration policy

The discovery server has three configurable variables. The values for
these variables can be defined by modifying the following configuration
policy – default values are shown:

inst config discoveryServer “{”
 pollInterval 30000 -- in milliseconds
 timeToLive 10000 -- in milliseconds
 maxRetries 5 “}“

These values are read in by the server at start-up – if they are changed,
the server should be shut down and brought back up again.

4.6 Context & Correlation

The context & correlation engine provides support to the Policy
Management Agents in order to enable more useful policies to be written.
The policies that we have looked at so far are relatively simple, in that on
occurrence of a particular event, one or more actions are carried out if
specified conditions evaluate to true. The actions we have considered are
based on the state of the event itself or the target on which the actions
are being carried out. Clearly, it would be useful to be able to base our
conditional expressions on “external” events such as time or location. In
addition, we may only wish to perform an action if a set of events occurs
in a particular pattern, rather than the occurrence of a single event.
Solutions for these issues are presented separately in the following sub-
sections.

4.6.1 Context data

Policies that include a when clause can make use of context information
by using the reserved word context, followed by the required context
variable in brackets, as follows:

inst oblig policyName “{”
…
when context(contextVar) == expr ; “}”

The contextVar is a variable that is supported by the context & correlation
engine. We can compare the value returned against any expression using
standard operators such as ==, < and > - the example above tests for
equality. In addition, we can use Boolean logic operators such as AND

60

Madhvani, N., Imperial College, London

(&&) to tie sub-clauses together. A when clause can also combine sub-
clauses based on the event, the target and context variables. For
example:

when (e.eventInfo == “ABC”) && (t.deviceStatus == “IDLE”) &&

(context(currentLocation) == “HOME” || context(currentLocation == “COLLEGE”)

Whilst sub-clauses on the event are used to build a subscription that is
sent to the events engine, and sub-clauses on the target are evaluated
there before the action is performed, the behaviour for context sub-
clauses is slightly different. When an event arrives at the PMA, it
determines which context variables are required, and sends a
getContextData event that is picked up by the CCE. This event contains
the contextVar. The CCE returns the result in a sendContextData event.
Whilst this approach does place a burden on the CCE to respond to a
potentially large number of requests for context data, the advantage is
that only the CCE obtains, processes and stores context data. Personal
devices have no need to maintain communication with a multitude of
context devices, or to process this data in any way.

The CCE effectively presents devices with a higher-level interface to
contextual data. How the data is collected or processed is not of concern
to the users of the data. Internally, the CCE distinguishes between
context variables that are calculated internally, and those that require
some external input, e.g. readings from a sensor. Those that are
calculated internally should simply be implemented in code. To speed up
the response time to devices, a separate process or thread should carry
out the calculations and store the data at defined intervals. A response
then simply involves reading the latest value for that variable.

Context variables that require one or more external events involve the
CCE subscribing to those events with the events engine. A recalculation
of the variable is then done each time an event arrives. Again, the data
is stored such that responding to a device’s request simply involves
reading the data. An example of context data that involves external
events is geographical location. A General Positioning System (GPS)
device may send events containing location co-ordinates, however this
data is of little value to a device that wants to configure its behaviour
dependent on whether someone is in a “home” or an “office”
environment. The CCE provides the ability to convert low-level concepts
into higher-level ones. In this instance, it would determine the mapping
between numerical co-ordinates and abstract locations such as “home”,
“office”, “cinema” etc that devices can make better use of.

The recalculation time interval is configurable via a configuration policy:

inst config CCE “{”

61

Policy-driven Middleware for Personal Area Networks

 recalcInterval 30000 -- in ms “}”

4.6.2 Correlation (derived) events

In order to provide support for event correlation, a slightly modified type
of policy will be used:

inst oblig policyName “{”
on derived(derivedEventPattern) ;
subject domainPath ;
do event(aggregateEvent) ; “}”

The reserved keyword derived specifies that the expression that follows
in brackets is not a single event, but a derived condition based on a
number of events. There is clearly considerably scope for providing a
wide range of types of rules, however there is a trade-off between
flexibility of event correlation and performance. We therefore propose the
following limited syntax:

eventA eventB true iff event B immediately follows event A
x * eventA true iff x occurrences of eventA

Events are therefore chained using operators to represent the order in
which they occur. The clause 3 * eventA is of course equivalent to
eventA eventA eventA. Support for other operators, such as
Boolean operators is left as a potential future extension.

Context &
Correlation EnginePMA

Derived
Policy

event addDerivedEvent

Events Engine

Correlation
data

su
bs

cr
ib

e
su

bs
cr

ib
e

su
bs

cr
ib

e

one subscription for
every event involved
In the derived event

read
policy build state machine

Figure 4.8: A derived event is not sent directly to the events engine – instead the
context & correlation engine builds a state machine to represent the derived event
and subscribes to the individual component events.

62

Madhvani, N., Imperial College, London

The subject domainPath specifies the domain in which the policy resides,
e.g. /policies/derived. The do (action) specifies that a new event should
be generated when the derivedEventPattern becomes true. This is just
like any other event that might be generated by a device. We can then
write policies that trigger when this event occurs.

Derived policies are not translated directly into subscriptions by the
corresponding PMA; instead, an addDerivedEvent event is sent to the
context & correlation engine (CCE) containing the derivedEventPattern as
a string. When the CCE receives such messages, it parses the string and
produces a list of individual events that are the
dependencies of the derived event. It
subscribes to these events in a similar way to
which a PMA subscribes to a standard event.
Therefore the CCE is acting as a consumer of
these events. Figure 4.8 illustrates these
interactions.

The CCE is responsible for generating the
derived event when the pattern of events
required occurs. It therefore builds a state
machine for every derived policy. The state
machine splits the derivedEventPattern string
into transitions. For example, “2 * eventA
eventB” is represented as {eventA, eventA,
eventB}. These transitions cause a change in
state. Figure 4.9 shows an illustration of a
state machine for this example.

Every time the CCE receives an event, it
checks each state model that it is maintaining
to see if there is a match in the next transition
that is waiting to complete. If there is no
match, we move back to the initial state. If
there is a match, we move to the next state.
If the final state is reached (pictured in green in our diagram) the derived
event is generated and placed onto the event bus. We then go back to
the start node.

eventA

eventA

eventB

! event A

! event A

ev
en

t

Events Engine

Figure 4.9: State
Machine model

4.7 Cell instantiation, standby and shutdown

Whilst we have looked at the various components that make up a self-
managed cell in our architecture, together with the major interactions
between them, we have not yet considered how a cell can be instantiated
or shutdown. All management components and devices that are to exist
in a single cell should have a local copy of the following common policy:

63

Policy-driven Middleware for Personal Area Networks

inst config common “{”
 eventsEngine urlPath “}”

The urlPath specifies where the events engine for the cell being
instantiated is located. The standard syntax for Elvin event servers
(routers) is “elvin://hostname:port” where the port is optional. If one is
not specified, then a default will be used.

The events engine should be started first since this forms the
communications backbone for the cell. The domain and context &
collaboration engines should be started next. Following this, the
discovery server should be started. We delay starting the discovery
engine until we are sure that we can deal with the domain membership of
new devices that we discover. Once all of these management
components have been loaded, devices can be allowed to connect to the
system, and will be discovered by the discovery server.

4.7.1 Standby mode

Since the devices in a cell are likely to remain relatively static over time
and we would like to minimise the amount of time taken to start up the
system, there is support in our architecture for a ‘standby’ mode. When
the cell goes into standby, the components write out all data that they
hold on to disk. For example, the domain server will write the domain
structure including the membership of each domain. The events engine
keeps a record of subscriptions. When the cell is brought out of standby,
the information is restored from disk and execution can continue as
before. If a cell is fully shutdown, rather than placed properly into
standby, then it is necessary to reinitialise the system from scratch, by
re-reading all the policies, creating subscriptions for the events server and
rediscovering the devices for addition into domains.

4.8 Summary

In this chapter we have presented a high-level design overview for our
proposed middleware architecture. We have looked at the components
that make up a self-managed cell, their functionality and the ways in
which they interact in order to support the autonomic management of
devices in a Personal Area Network. In addition, we have presented new
types of policies that can represent this behaviour.

Our approach towards policy and domain management agents advocates
the use of threads to increase the level of concurrency possible. In
addition, each object that runs as a thread has direct capabilities to
communicate with the asynchronous event bus. We suggest that this
paradigm is likely to deliver higher performance than a more traditional

64

Madhvani, N., Imperial College, London

approach where a centralised communications agent handles
communication for a large number of entities.

We have also proposed the definition of device profiles as standards.
These can be updated over time, and define the functionality that devices
adhering to them can provide. By enabling these profiles to be upgraded
via firmware updates, users can be provided with enhanced functionality
as and when it is agreed by the standards body.

In the following chapter, we translate our high-level design into a detailed
architectural design, mapping into software components suitable for an
implementation.

65

Policy-driven Middleware for Personal Area Networks

5 Detailed Architectural Design
This chapter forms the second part of our architectural design description.
We build upon the work described in the previous chapter and present a
detailed design that maps the high-level behaviour we have already
looked at into a model suitable for implementation in a modern
programming language. Whilst the majority of content presented here is
language-independent, where it is necessary to explain the behaviour of
algorithms and the definition of data structures in specific detail, we make
reference to the Java 1.4 API. However mapping our model from Java
into similar object-oriented languages such as C++ and C# is unlikely to
prove a particularly arduous task, since the overall software structure
remains unchanged.

5.1 An object-oriented architecture

The middleware architecture we propose is has been developed using the
object-oriented paradigm. Under this approach, software quality is
heavily influenced by how we assign responsibilities to objects that
compose the system. Responsibilities include knowledge and behaviour.
Knowledge refers to knowing about private encapsulated data, about
related objects and about things that can be derived or calculated.
Behaviour encompasses an object doing something itself, initiating action
in other objects, as well as controlling and co-ordinating activities in other
objects. By ensuring an appropriate separation of concerns, we can
achieve our goals of high cohesion and low coupling between objects.

As part of good software engineering methodology, we advocate and
utilise the Gang of Four (GoF) design patterns [DATA02] that suggest
recurring solutions to problems that are encountered again and again in
software systems.

The design presented in the rest of this chapter makes extensive use of
UML (Unified Modelling Language), which is in widespread use in the
design of object-oriented software. In particular, we make use of class
diagrams to represent the relationships between classes and interfaces.

5.2 Events engine

As described in the high-level design, we make use of DSTC’s Elvin event-
based middleware to provide our asynchronous communications bus. Elvi
is deployed in two components – a router (elvind) that is effectively the
events engine and handles subscriptions etc, and a Software
Development Kit (SDK) for the chosen flavour of programming language
that provides the client libraries for communicating with the router. We
use the Elvin Java API (je4) to describe how our components make use of

66

Madhvani, N., Imperial College, London

the features that Elvin provides, however similar APIs are available for
C++, Python and the Microsoft COM (ActiveX) environment. Client
libraries implement the Elvin client protocol, and provide a mapping from
the native data types of the programming language to those used in Elvin
notifications.

Our approach is to encapsulate and extend the supplied Elvin API as part
of own ‘client connection object’ that provides a single, clearly defined
object for use by all entities to communicate via the asynchronous bus.
The sub-sections that follow detail our methodology.

5.2.1 Elvin Router

The Elvin Router supports several platforms at the time of writing,
including Microsoft Windows 2000 and XP, Red Hat Linux, Sun Solaris,
Mac OS X, FreeBSD and Irix. Microsoft Windows CE and Pocket PC are
not supported at the moment, though the scope exists for these platforms
to be supported in the near future. Despite this disadvantage, we
selected Elvin due to it meeting our requirements in a wide range of other
areas, such as performance.

Communication under Elvin takes place using TCP/IP sockets. However
this is wrapped by a series of higher-level proprietary protocols that
define the URL-based addressing scheme and the specific way in which
events are transmitted, transported and delivered. A key benefit of using
Elvin is that we can run it over any type of TCP/IP network that we
choose. For example, we could choose between a WiFi 802.11b network
or one based on the Bluetooth PAN profile – as long as we have a TCP/IP
stack, no modification needs to be made to the Elvin installation.

The router can be either referred to either by its hostname or IP address,
e.g. “elvin://elvinserver” or “elvin://192.168.2.1”. The only requirement
from a networking perspective is that the devices must be able to
communicate on the TCP and UDP ports that Elvin requires, as defined in
the Administrator’s Guide [MANT04b].

5.2.2 Core communications functionality

Since all entities in our self-managed cell (including management
components and devices) need to be able to send events to and receive
events from the asynchronous bus, we have defined a core
communications class CoreComms that implements common functionality
such as integration with the Elvin client components. This eliminates the
need for individual entities to have to duplicate these tasks. Figure 5.1
presents a class diagram defining the dependencies between CoreComms
and the Elvin API. Note that we have only shown the attributes and
methods that are relevant to our implementation.

67

Policy-driven Middleware for Personal Area Networks

The CoreComms abstract class should be extended by all management
components and the device adapters. Instantiation takes place by
specifying the URL of the Elvin router and a unique entity ID, e.g.
“discoveryServer” as parameters. Sub-classes must implement the
eventAction method that is declared abstract in CoreComms. This
method defines the actions that should be performed when an incoming
event arrives. Note that Elvin handles “notifications” and not “events”.
An Event is defined by us as an extension to Elvin’s Notification class.
This is simply a wrapper for neatness and allows us to define additional
attributes such as the name of the event and the time it was generated.
The Event class handles the translation into a Notification before the
object is placed onto the bus.

Elvin’s notification system is based on the Observer design pattern. The
addSubscription method is called on the Consumer object, specifying an
object that Elvin should call with the notificationAction(event Notification)
method. CoreComms implements this interface and therefore any class
extending it will have the method called by Elvin to deliver a notification.
Since we would like to deal with events rather than notifications, the
notificationAction method always carries out any common functionality
and then calls the eventAction method to pass the sub-class an Event
object.

Upon instantiation of an object that extends CoreComms, the connection
to the Elvin router will be established, along with the creation of
Consumer and Producer objects that are used for communication with the
router. As shown in the class diagram, entities in our architecture should
not need to communicate with these objects directly – all outward
communication takes place using the sendEvent and subscribeEvent
methods as defined in CoreComms.

68

Madhvani, N., Imperial College, London

+Producer(in connection : Connection)
+notify(in n : Notification)

org.elvin.je4::Producer

+Consumer(in connection : Connection)
+addSubscription(in sub : Subscription)

org.elvin.je4::Consumer

+Connection(in url : ElvinURL)

org.elvin.je4::Connection

+Subscription(in expression : String)

org.elvin.je4::Subscription

+CoreComms(in routerURL : String, in entityID : String)
+notificationAction(in event : Notification)
+eventAction(in event : Event)
-sendEvent(in event : Event)
-subscribeEvent(in sub : Subscription)

pdm::CoreComms

1
1

1 1

1

1

+ElvinURL(in url : String)

org.elvin.je4::ElvinURL

1
1

+put(in name : String, in value : Object)
+get(in name : String) : Object

org.elvin.je4::Notification

+notificationAction(in event : Notification)

«interface»
org.elvin.je4::NotificationListener

1

*

CoreComms is an abstract
class that is extended by
SMC entities. eventAction
is an abstract method to be
implemented for callbacks.

Whilst not shown here,
put is overloaded to support
types other than Object

+eventName : String
+genTimestamp : String

pdm::Event

Figure 5.1: Definition of a core communications class to be extended by management components
and devices in the self-managed cell.

69

Policy-driven Middleware for Personal Area Networks

Note that when a notification arrives, the notificationAction method will be
called by a thread belonging to Elvin, allowing notifications (and thus
events) to arrive and be processed in a concurrent manner. However as
stated in the Elvin documentation, it is vital that the time spent executing
code upon the callback should be minimised. Therefore our entities that
define eventAction should make use of their own worker threads to carry
out any complex processing of events, rather than doing the work in the
Elvin notification thread.

5.3 Policies & Policy management agents

 The proposed design for the policy sub-system is presented in Figure 5.2.
Policy is an abstract class which is extended by two types of policies –
BasicPolicy and DerivedPolicy. All policies have a subject (i.e. the path of
the domain where the policy is stored). Basic policies are those which are
based on the occurrence of a single event. These policies define the
event on which they are triggered, the target domain, and provide a
method that can be called to test conditions on an event as well as a
method to test expressions based on context data.

+CoreComms(in routerURL : String, in entityID : String)
+notificationAction(in event : Notification)
+eventAction(in event : Event)
-sendEvent(in event : Event)
-subscribeEvent(in sub : Subscription)

pdm::CoreComms

+eventAction(in event : Event)
+run()
-subscribe(in p : BasicPolicy)
-subscribe(in p : DerivedPolicy)
-getContext(in var : String) : String
-sendActionObj(in a : Action, in t : String)

pdm.policy::PolicyManagementAgent

+testEvent(in e : Event) : bool
+testContext() : bool

-onEvent : String
-target : String

pdm.policy::BasicPolicy

+run()

«interface»
java.lang::Runnable

+Thread(in r : Runnable) : Thread

java.lang::Thread

1 1

1
1..*

+send(in obj : Object)
+receive() : Object

pdm::Port

1 1

-onDerivedExpr : String
-derivedEvent : String

pdm.policy::DerivedPolicy

-subject : String
pdm.policy::Policy

+testTarget() : bool
+doActions()

pdm.policy::Action

1

1

«interface»
java.io::Serializable

Figure 5.2: Policy and PMA structure and key relationships

70

Madhvani, N., Imperial College, London

When an event arrives at the PMA, it checks the onEvent of all basic
policies that it is managing and if there is a match, then the testEvent and
testContext methods are called to evaluate any conditions corresponding
to the event itself or context data. The testContext method results in a
call to the PMA’s getContext method for each variable that is required in
order to complete the test. The PMA requests this data via an event, and
returns when the data is available. The use of a retry and timeout
mechanism is essential to handle the case where the request and/or
response become lost during transmission.

5.3.1 Encapsulation of actions

A basic policy has a 1:1 relationship with an Action object. This is based
on the Command design pattern, where the operations to be carried out
are encapsulated in an object and passed to the target which then calls
the object’s relevant methods. In our implementation, the PMA calls its
private sendActionObj method which serializes the Action object passed in
and delivers it to the target domain’s DMA by placing an event on the bus
with an eventName of “action”. The recipient DMA will propagate the
action object to its devices and any subordinate DMAs. When the action
object reaches a device, the testTarget method is called which carries out
conditional tests on the device. If the result of this call is true, then the
doActions method is called to carry out the actions. The action object can
then be discarded.

5.3.2 Thread & mailbox model

The PMA itself runs as a thread – note that we have demonstrated how
this may be implemented in Java, however several other languages also
support threads in a similar manner. Since the PMA responds to incoming
events, we make use of a simple mailbox (port) mechanism to store
events before they are processed by the PMA. An incoming event (via
EventAction) causes the event to be “sent” to the port. The PMA thread’s
run object then performs a receive on the port and is blocked if there is
nothing waiting to be processed. A sample Java implementation of our
Port class is shown below:

package pdm;

import java.util.LinkedList;
import org.elvin.je4.Notification;

public class Port {

 private LinkedList messages;

 Port() {
 messages = new LinkedList();

71

Policy-driven Middleware for Personal Area Networks

 }

 protected synchronized void send(Notification n) {
 // This method is called by the Elvin router
 // via the policy
 messages.addLast(n);
 notify();
 }

 protected synchronized Notification receive()
 throws InterruptedException {
 // Policy thread is blocked if there are no
 tifications available to collect // no
 while (messages.size() == 0)
 wait();
 return (Notification) messages.removeFirst();
 }
}

Note from the above that as part of Java’s support for building
applications that use concurrency, we can use the synchronized keyword
to ensure exclusive access to a method.

5.3.3 Basic & derived policies

When the PMA is instantiated, it creates subscriptions for each of the
policies that it is managing. The subscribe method is polymorphic, so that
the behaviour can be different for basic and derived policies. Subscribing
a basic policy is quite straightforward – the policy’s onEvent attribute is
used. For a derived policy, the onDerivedExpr and derivedEvent
attributes are passed via an event to the context & correlation engine. It
is the responsibility of the CCE to parse the derived events expression and
to set up subscriptions for the corresponding events that are involved in
the derived event. The CCE is informed about these events and
generates derivedEvent only if the individual events occur in the pattern
stated in the derived events expression.

5.3.4 Policy compilation

Note that as stated in the project scope, we have not proposed a
mechanism for compilation of policies from the high-level Ponder-like
syntax into objects that can be instantiated. Therefore for the purposes
of our implementation, the policies are translated “by hand” into the
equivalent object representations as shown in Figure 5.2.

5.4 Device adapters

Device adapters provide instrumentation with physical hardware devices.
As described in the previous chapter, we make use of a ‘quenching’
mechanism to ensure that devices only transmit events if there are

72

Madhvani, N., Imperial College, London

consumers that require them. Since devices may have the capability to
send out a wide range of events at regular intervals, it would be highly
inefficient for all such devices to send every type of possible event to the
event bus. However implementing quenching does require that we store
additional data in order to keep a track of the number of consumers that
are listening to each event that the device has the capability to generate.

The class diagram for device adapters is presented in Figure 5.3. Our
DeviceAdapter is defined to be an abstract class so that users of the
middleware can define their own adapters as necessary by extending it
and defining the processActionObject method that is called when an
incoming action arrives from a policy management agent. Upon
instantiation of a device adapter, in addition to the Elvin Router URL, we
must pass in a profile string and an entity ID. The profile string is simply
a semi-colon delimited list of profiles that the device supports, e.g.
“phone;pda”. These profiles are sent to the domain server when the
device is discovered, so that it is can be added in to the correct
domain(s).

All DeviceAdapter sub-classes must listen out for a common set of events
and therefore the constructor of DeviceAdapter sets up these
subscriptions. In particular, we need devices to listen for “action” events
that are directed to them and to the “whoIsAlive” ping messages that are

+CoreComms(in routerURL : String, in entityID : String)
+notificationAction(in event : Notification)
+eventAction(in event : Event)
-sendEvent(in event : Event)
-subscribeEvent(in sub : Subscription)

pdm::CoreComms

+DeviceAdapter(in profileList : String, in routerURL : String, in entityID : String)
-processActionObject(in a : Action)
+sendEvent(in event : Event)

-profileList : String
pdm.devices::DeviceAdapter

+quenchAdd(in event : QuenchEvent)
+quenchDelete(in event : QuenchEvent)
+quenchModify(in event : QuenchEvent)

«interface»
org.elvin.je4::QuenchListener

+Quencher(in connection : Connection)

org.elvin.je4::Quencher

1

+QuenchData(in event : String, in c : Connection)
-increment()
-decrement()
+isZero() : bool
+quenchAdd(in event : QuenchEvent)
+quenchDelete(in event : QuenchEvent)
+quenchModfy(in event : QuenchEvent)

-count : int
-event : String

pdm.devices::QuenchData

1..*

+getType() : int

org.elvin.je4::QuenchEvent

+Quench(in attributes : String)
+addQuenchListener(in ql : QuenchListener)

org.elvin.je4::Quench

1

QuenchEvents are sent by the Elvin router
to entities that are listening for a Quench
based on a particular event name, when
the subscription for that event changes

DeviceAdapter is an abstract class -
devices should extend it and
implement processActionObject in
order to define interactions with
the hardware

Figure 5.3: Class diagram defining the abstract DeviceAdapter and event quenching mechanism

73

Policy-driven Middleware for Personal Area Networks

sent by the discovery server. Appropriate Subscription objects should
therefore be created and passed to the subscribeEvent method. The
subscription format for action events is detailed in the high-level design
for the action transport mechanism (see Section 4.4).

5.4.1 Event quenching

In addition to subscribing to standard events, it is necessary for the
device adapter to instantiate a QuenchData object for every event that
the device can generate. This class is defined as part of our architecture
rather than as part of the Elvin libraries, and provides support for
handling changes in subscriptions. The Observer design pattern is used
here to register a QuenchData object by calling the addQuenchListener
method on the Quench object (there is a 1:1 correspondence between
QuenchData and Elvin’s Quench API class). QuenchData realizes the
QuenchListener interface. We also make use of the Quencher class from
the Elvin API which is equivalent to the Consumer and Producer classes
for standard subscriptions. To instantiate a Quench subscription, we
simply provide a string containing the name of the event that the device
would like to know consumer information for1. As part of the quenching
mechanism, Elvin will send the device adapter a QuenchEvent, each time
the number of consumers subscribed to an event changes. The getType
method can be called on this object to work out whether it is an addition,
deletion or modification of subscription.

Devices should place events on the bus by calling the sendEvent method.
This method overrides the method with the same time defined in
CoreComms, since devices require slightly different behaviour to support
quenching. Our overridden method calls the isZero method on the
QuenchData object corresponding to the event that is about to be sent on
to the bus. If this returns true, then no consumers are listening and the
event is discarded. Otherwise the event is transmitted as usual.

5.5 Discovery server

We propose a simple structure for the discovery sub-system, as shown in
Figure 5.4. The DiscoveryServer component extends our common
functionality class CoreComms to provide access to the event bus. As
part of the instantiation of the server, we take in the configuration
variables as specified in the configuration policy. Note that we do not
provide a compiler to map from the configuration policy syntax into
objects as part of this implementation; this is left as scope for potential
future work.

1 Currently it is only possible to quench based on an attribute name – the
condition cannot be based on attribute values.

74

Madhvani, N., Imperial College, London

The behaviour of the Discovery Server is as described in the pseudo code
contained in Section 4.5. A whoIsAlive call is made at regular intervals to
check if the devices that we know about still exist, or if new ones are
visible in the cell. We maintain a DeviceData object for every device that
is discovered. This contains information that is communicated to the
domain server via the genNewDevice and genLostDevice methods for new
and lost devices respectively. These methods generate and place the
appropriate event on the bus, which is picked up by the domain server.

+CoreComms(in routerURL : String, in entityID : String)
+notificationAction(in event : Notification)
+eventAction(in event : Event)
-sendEvent(in event : Event)
-subscribeEvent(in sub : Subscription)

pdm::CoreComms

+DiscoveryServer(in routerURL : String, in entityID : String, in pI : int, in tTl : int, in mR : int)
-genWhoIsAlive()
-genNewDevice(in device : DeviceData)
-genLostDevice(in device : DeviceData)

-pollInterval : int = 30000
-timeToLive : int = 10000
-maxRetries : int = 5

pdm.discovery::DiscoveryServer

+DeviceData(in id : String)

+deviceID : String
+connectedSince : String
+numRetriesLeft : int
-profileString : String

pdm.discovery::DeviceData

0..*

Figure 5.4: Discovery server key components

5.6 Domain server

The domain sub-system is provided for the purposes of being able to
group policies and devices and to be able to apply actions to an entire
group of objects, together with any sub-groups. In Section 4.4 we
presented the structure of our domain system, noting that devices can
belong to one or more domains. We now take this high-level design and
propose a software design for this sub-system as part of our middleware
architecture. As part of the design process, we considered whether or not
it should be possible to distribute the domains across several devices.
With a distributed solution, the domains could communicate via the
asynchronous events bus to propagate actions to sub-domains, however
this is likely to impose a significant overhead with large domain
hierarchies. Since our intention is to minimise the amount of network
traffic between components in our self-managed cell, we concluded that a
centralised approach to domains is more suitable for this application.
However we have proceeded to design this sub-system in such a way that
should distributing domains be perceived to be advantageous in the
future, this can be implemented with minimal changes to the code.

A class diagram for the domain sub-system is shown in Figure 5.5.
Domain objects can have one or more children, as shown by the

75

Policy-driven Middleware for Personal Area Networks

relationship between this class and itself. We use a composition operator
to indicate that sub-domains can only exist if the parent exists. All
domains have a relative name domainName and the recursive
getAbsDomainName method call can be made to obtain the absolute path
by recursing up the hierarchy of domains. The DomainDevice class is
used to maintain references to devices that belong within a domain. A
DomainDevice object is created using the unique device string (e.g. MAC
address) and a Domain will hold zero or more of these objects.

+DomainServer(in r : String, in e : String)
+addDevice(in eID : String, in profileString : String)
+removeDevice(in eID : String)

pdm.domain::DomainServer

+CoreComms(in routerURL : String, in entityID : String)
+notificationAction(in event : Notification)
+eventAction(in event : Event)
-sendEvent(in event : Event)
-subscribeEvent(in sub : Subscription)

pdm::CoreComms

+run()

«interface»
java.lang::Runnable

+DomainManagementAgent(in r : String, in e : String)
-propagateAction(in a : Action)
+receiveAction(in a : Action)

pdm.domain::DomainManagementAgent

+Thread(in r : Runnable) : Thread

java.lang::Thread

+send(in obj : Object)
+receive() : Object

pdm::Port

1

1

+getAbsDomainName() : String
+addDevice(in eID : String)
+removeDevice(in eID : String)

-domainName : String
pdm.domain::Domain

1

0..*

1
1

*

+DomainDevice(in eID : String)
+sendAction(in a : Action)

-deviceID : String
pdm.domain::DomainDevice

*

Figure 5.5: The domain sub-system

5.6.1 Mapping from device profiles to domains

The DomainServer object is responsible for dealing with the newDevice
and lostDevice events from the discovery server, and registers
subscriptions for these with the events server upon instantiation. The
occurrence of these events causes the addDevice and removeDevice
methods to be called respectively. When adding a device to the domain
system, we need to map a profile string as received from the device via
the discovery server into one or more domains that the device will be

76

Madhvani, N., Imperial College, London

placed into. Whilst there are a number of ways in which this might be
carried out, our proposed method for doing this is as follows:

split the semi-colon delimited profile string into a set
of profiles

scan through our ruleset and narrow down to r = rules
that contain at least one of the profiles

for each rule in r {
 if rule evaluates to true against profile set {
 add device to rule.domain
 }
}

As an example, with the ruleset:

phone /devices/phone
pda /devices/pda
music /devices/musicplayers
headset /device/headset
phone && pda /devices/phone/smartphone

Our example device with profiles {phone, pda, music} would join the
/devices/phone, /devices/pda, /devices/musicplayers and
/devices/phone/smartphone domains. The fourth rule will evaluate to
false, against our profile set since our device doesn’t support the headset
profile. Therefore, as part of our approach, if a rule “conflict” occurs, the
device simply joins both of the domains and there is no requirement to
carry out any prioritisation of rules or to resolve any conflicts. We scan
through all rules until we reach the bottom of the ruleset.

An alternative approach might be to follow the mechanism typically used
to define rules for a firewall in a network. The rules are evaluated in
order until one evaluates to true. We then stop at this stage and no
further rules below this one as considered. We may also wish to use a
system based on scoring, where we evaluate a profile set against a set of
rules, and assign a numerical value against each match. We then add the
device to the domain with the highest score. As part of this, we may also
need to define a “mandatory” flag, to allow for certain rules to always be
used, regardless of the score. The problems for using these types of
complex approaches however involve an increase in the amount of
processing power required, as well as the increased scope for causing
undesirable behaviour by misconfiguration of the ruleset.

5.6.2 Adding devices to domains

The domain server adds a device to a domain by simply calling the
addDevice method on the relevant Domain object, passing in the device

77

Policy-driven Middleware for Personal Area Networks

ID. This causes a DomainDevice object to be instantiated and attached to
the relevant domain. A Domain has a 1:1 relationship with a
corresponding DomainManagementAgent. The two could have been
implemented as one entity, however we have separated them in order to
encapsulate data related to a domain inside a Domain object and
functionality related to managing a domain inside the agent. Our domain
management agents run as threads and use a mailbox to queue events.
The reason for using a mailbox (Port) and our own worker thread to carry
out work is that we must avoid blocking the incoming Elvin thread for
anything more than very simple operations. When an action arrives we
need to generate and transmit events to the devices in the domain,
however this work is much too intensive to be carried out within the Elvin
thread, and could cause Elvin to run out of threads in its internal thread
pool.

5.6.3 Handling incoming action objects

The DomainManagementAgent subscribes to the “action” event with the
events engine such that actions to be performed on events in a domain
and propagated to sub-domains can be received from policy management
agents. When an action is received, the receiveAction method is called
and this results in the sendAction method being called on each
DomainDevice object that corresponds to a device in the domain.
Through this mechanism, the action is serialized and sent as an event to
each of the devices. The action is processed as detailed earlier in this
chapter. However, in addition to carrying out the action on devices in
that domain, it is also necessary to propagate the action to the DMAs of
all sub-domains, if they exist. In our implementation, this is achieved by
making a call to the private propagateAction method of the DMA that calls
the send method on the mailbox (Port) of the relevant sub-domain. The
action is therefore placed in the queue for the sub-domain and processed
by its DMA, just as if the event had arrived directly via the asynchronous
bus. The advantage of this mechanism is that we provide the ability to
move from a centralised to a distributed domain structure with relative
ease. In a distributed system, the DMAs would propagate the action
objects via the event bus rather than via local method calls.

We note that as part of our design, actions are sent directly to the target
domain’s DMA, rather than to the domain server and each DMA runs as a
thread. The rationale behind this design is firstly that running each
domain as a thread provides us with added concurrency. Secondly, and
more importantly, sending actions directly to a DMA is more efficient than
a domain server having to propagate the action through the domain
hierarchy. We would like to minimise network traffic and therefore
propagation is only required for sub-domains. Parent domains are not
affected in any way. In addition, by allowing each DMA to receive events

78

Madhvani, N., Imperial College, London

directly from the bus, we make it more straightforward to move to a
distributed domain model if this is perceived to be of benefit. DMAs could
be located on different hardware devices and could still form a
hierarchical domain structure.

5.7 Context & collaboration engine

The context and collaboration functional areas were grouped into one
sub-system since both of these features enable richer policies and
behaviour based on events other than those generated directly by
devices. The context & collaboration engine (CCE) takes in one
configuration parameter, which defines the interval at which context data
should be recalculated. Again, we extend the CoreComms common class
that provides us with the ability to send events to and receive events
from the asynchronous bus.

+CoreComms(in routerURL : String, in entityID : String)
+notificationAction(in event : Notification)
+eventAction(in event : Event)
-sendEvent(in event : Event)
-subscribeEvent(in sub : Subscription)

pdm::CoreComms

+ContextAndCorrelationEngine(in r : String, in e : String, in recalcInt : int)
+run()
-addDerivedEvent(in derivedEventString : String)
+sendDerivedEvent(in event : String)

+recalcInt : int = 30000
pdm.cce::ContextAndCorrelationEngine

+ContextData(in name : String)
+setValue(in val : String)
+getValue() : String

-variableName : String
-value : String

pdm.cce::ContextData

+run()
-recalcData()

pdm.cce::ContextAdapter

1*

1
1

+Thread(in r : Runnable) : Thread

java.lang::Thread

+run()

«interface»
java.lang::Runnable

1

+send(in obj : Object)
+receive() : Object

pdm::Port

1

1

+CorrelationData(in derivedEventPattern : String)

-stateMachine : List
-pointer : int

pdm.cce::CorrelationData

+add(in index : int, in element : Object)
+get(in pointer : int) : Object
+size() : int

«interface»
java.util::List

1

1

*

Figure 5.6: Context & Correlation Engine

79

Policy-driven Middleware for Personal Area Networks

5.7.1 Contextual data

Firstly, let us look at the components that calculate and provide
contextual data. The CCE instantiates a ContextData object for every
context variable that the CCE can provide to policy management agents.
This simple object holds a value against a variable, where both are
treated as strings. As shown in Figure 5.6, each context variable has a
ContextAdapter object which runs as a thread and consists of a mailbox
for the storage of events. In a Java implementation, the run method is
called when the thread is started. Within the method we simply call
receive method on the Port and repeat this infinitely. When an inbound
request for context data comes in, we will pick it up from the mailbox in
this way. In addition, the CCE itself is a thread and in its run method it
sleeps for recalcInt, and then calls recalcData for each of the context
variables it is managing. This process repeats perpetually. Note that the
ContextAdapter class and recalcData method are abstract – adapter
implementations should extend this class and define the method to
determine how a variable should be calculated.

The CCE should subscribe getContextData event which allows it to receive
requests from PMAs. In addition, subscriptions will exist for any external
events that are needed. In our implementation, we assume that external
events are those that are generated by context devices that effectively sit
outside of a SMC. They are therefore broadcast to all cells within range.
Each time an external event is received that is of interest, we recalculate
the relevant variables and update the ContextData objects. Internal
variables (i.e. those that do not require at least one external data value)
are recalculated at regular intervals instead.

An incoming request for context data will be placed in the mailbox via the
send method on the Port object. The request will be serviced by the
ContextAdapter thread which will call getValue on the ContextData to
obtain the stored value. The result will be returned by placing a
sendContextData event on the event bus via the main CCE component.

5.7.2 Event correlation

The mechanism for event correlation is based on a state machine
approach and is described at a high-level in Section 4.6.2. The CCE
should listen for the addDerivedEvent event as placed by PMAs on to the
event bus. This event includes a “derivedEventPattern” string that
specifies the order in which individual events should occur for the derived
event to trigger. When the addDerivedEvent is picked up by the CCE, it
will call its own addDerivedEvent method that will instantiate a new
CorrelationData object with the derived event string as a parameter. The
string enables the CorrelationData object to build a state machine. Our

80

Madhvani, N., Imperial College, London

approach here is to use an indexed list, where the pointer variable starts
at zero. The string is parsed and broken into a set of events. These are
added in the same order to the list.

The individual events require subscriptions and these are created via the
CCE’s subscribeEvent method. When these events occur, the CCE uses
the get method on the list to find out the event that each CorrelationData
object expects to see next. This is compared against the event that has
occurred. If there is a match, the pointer is incremented. If the pointer
now equals the value returned from a call to the size method, then we
have reached the end of the state machine, and the derived event should
be generated using the CCE’s sendDerivedEvent method. If no match
was found, then the pointer is set back to zero, i.e. we reset the state
machine. Note that we are assuming here that the network is reliable
and that events arrive in the correct sequence. However due to the
inherent “one-shot” communications paradigm used by Elvin, it is possible
that events may be delayed and arrive out of sequence. To deal with this
situation, we may use timestamps and hold a small buffer (i.e. a sliding
window), reordering any out-of-order packets in a similar way to how the
Transmission Control Protocol (TCP) provides a reliable transport protocol
for networks such as the Internet. The disadvantage of this approach is
of course increased overhead and computational complexity.

5.8 General architectural issues

In our discussion above with regards to the various sub-systems that
comprise our middleware architecture, we have not looked into system
quiescence with data persistence. This is a general design feature that
should be implemented in each of the management components. Our
suggested approach is to add functionality in the DiscoveryServer,
DomainServer and ContextAndCorrelationEngine classes to write out all
state data as an XML document. When instantiating each of these
components, a check should then be carried out to determine if saved
state data exists. We only want to use saved state data if it was written
in the recent past, so the timestamp on this file should also be checked.
If the XML document is valid, the data is then restored and the sub-
system is effectively taken from a quiescent state to an active one.

In terms of carrying out a cold bootstrap on the system, the procedure
described in Section 4.7 should be followed. It is imperative that the
asynchronous event bus is started first, since this forms the backbone for
the whole system.

5.8.1 Package structure

For reference, the package hierarchy that we have used is as follows:

81

Policy-driven Middleware for Personal Area Networks

org.elvin.je4 Elvin client libraries

pdm Core classes and interfaces, events engine
- pdm.policies Policies & Policy management agents
- pdm.domain Domain server
- pdm.discovery Discovery server
- pdm.cce Context & Correlation Engine
- pdm.devices Device adapters

Note that pdm is an abbreviation for “policy-driven middleware”.

5.9 Summary

In this chapter we have presented a detailed architectural design, building
on the high-level design described in the previous chapter. We made use
of UML class diagrams to describe the structure of each of the sub-
systems and provided a description of the key object interactions. In
certain instances we made use of parts of the Java API to demonstrate
how an implementation might be achieved if Java is selected as the
preferred language. However, most of these concepts could be easily
mapped into object-oriented languages such as C++ and C#.

82

Madhvani, N., Imperial College, London

6 Case study
In this chapter we present a scenario that may typically occur in a
personal area networking environment. We then describe how our
middleware solution may be deployed to deliver this functionality,
specifying how device profiles, domain structure and policies should be
configured. Our intention here is to demonstrate the capabilities of our
solution as a tutorial, such that other application developers can make
use of the technology by following a similar approach.

6.1 Scenario overview

We’ll present a scenario using one of our fictional characters, Bob. Bob’s
personal area network consists of a standard mobile phone (std_phone),
a PDA with built in phone features (pda_phone), a MP3 music player
(mp3_player) and a digital watch (watch). Before running these devices
as part of a self-managed cell, Bob typically used them as independent
devices, however this led to a number of problems:

• Bob used his PDA to store appointments and set alarms to give
him advance notice of them, however since his PDA was often kept
inside his bag, he frequently missed alarms and was subsequently
late.

• Bob’s PDA also functions as a mobile phone and he used it to make
and receive calls in addition to his standard mobile phone.
However since he regularly travels around the country, he found
that his PDA often ran out of batteries and therefore he ended up
missing important phone calls.

• As an avid movie lover, Bob regularly visits the cinema. However
he almost always forgets to switch his phone off, or on to a silent
mode, and this often caused him a great deal of embarrassment.

• Whilst listening to his MP3 player, Bob often missed several
important phone calls since he was unable to hear his phone ring.

One of the key points we observe from the above is that Bob is having to
adapt around the way in which the technology operates, rather than the
other way around. The types of problems discussed above are clearly
likely to discourage users from making greater use of advances in
technology.

Under our self-managed cell middleware architecture, many of the
problems that Bob faced can be eliminated, making the technology more
useful to him. Here are the specific improvements that we will look at:

83

Policy-driven Middleware for Personal Area Networks

• When Bob’s PDA wants to alert him about an appointment, in
addition to sounding its own internal alarm, it asks his digital
watch to sound an alarm as well. Whilst Bob’s watch doesn’t have
the capability to display alphanumeric characters, the type of alert
indicates to him that he should pick up his PDA for further details.

• If Bob’s PDA has less than 10% battery life remaining, it
automatically sets up a call diversion service to forward his calls
from the PDA to his standard mobile phone. This is done without
Bob’s intervention and means that Bob no longer misses important
calls. The value of 10% is a default, and Bob can specify his own
value if he wishes to do so.

• When Bob comes with proximity of a cinema, his phone and PDA
both automatically switch to a silent vibrating mode. Bob no
longer needs to worry about turning his phone off. When he
leaves the cinema, both his phone and PDA switch back to an
audible alert.

• When Bob is listening to music on his MP3 player and a call comes
in on either mobile device, the music pauses and he hears a
message announcing the phone number of the person calling him.
Once the call his over, his music player automatically resumes
playback.

• If Bob receives two consecutive missed calls on his phone, his
watch bleeps to indicate that someone may be trying to reach him
urgently. Bob finds this useful if he accidentally left his phone in a
different room and therefore couldn’t hear it ringing.

Now that we have defined the type of behaviour that we would like to
provide, we will describe how our middleware can be deployed to provide
this functionality.

6.2 Defining device profiles

Device profiles should typically be defined as standards and
implemented by manufacturers in a similar way to Bluetooth profiles. For
the purposes of this case study, we define some suggested profiles.

For each profile, we define events and/or actions as appropriate. Events
are those generated by devices implementing that profile. The defined
actions are the ones that devices supporting that profile can accept. Note
that our profiles only define events and actions relevant to our scenario.
We also show local conditions where necessary – these are conditions that
are tested at a device before an action is carried out.

84

Madhvani, N., Imperial College, London

6.2.1 Profile: common

Events:
batteryLow(percentRemaining)

6.2.2 Profile: pda

Events:
appointmentAlarm(apptText)

6.2.3 Profile: phone

Events:
incomingCall(callerID)
endedPhoneCall()
missedCall(callerID)

Actions:
switchToSilentMode()
switchToAudibleRing()
divertCalls(number)

6.2.4 Profile: simplealertdevice

Actions:
soundAlarm(alarmPattern)

6.2.5 Profile: audioplayer

Actions:
pauseAudio()
playAudio()
playCallerID(callerID)

Local conditions:
isAudioPlaying
pausedForIncomingCall

6.3 A domain hierarchy

6.3.1 Profile to Domain Ruleset

We use the following ruleset in our domain server to map profiles to
domains:

common /devices
phone /devices/phone
pda /devices/pda
audioplayer /devices/musicplayers

85

Policy-driven Middleware for Personal Area Networks

phone && pda /devices/phone/smartphone
simplealertdevice /devices/alarm

6.3.2 Domain structure

Application of the ruleset above results in the following domain
membership:

/devices/phone {std_phone, pda_phone)
/devices/pda {pda_phone}
/devices/musicplayers {mp3}
/devices/phone/smartphone {pda_phone}
/devices/alarm {watch}

The common profile applies to all devices, and is linked to the domain
/devices, so that there is propagation to all devices. For further details on
how our ruleset is applied to determine the domain membership, please
see Section 5.6.

6.4 Setting up SMC policies

SMC policies are configuration policies that allow for developers to
configure the behaviour of the management components with a cell. The
first policy is a common policy that defines the URL to the events engine.
This policy must exist on all management components and devices. In
this example, we assume that the Elvin Router is running on IP address
192.168.1.1:

inst config common {
 eventsEngine “elvin://192.168.1.1” }

Next, we configure the discovery server. In this example, we would like
the discovery server to poll for devices every 10 seconds, waiting 5
seconds for each device to reply, and making a maximum of 3 retries
before considering a device to be “lost”:

inst config discoveryServer {
 pollInterval 10000 -- in milliseconds
 timeToLive 5000 -- in milliseconds
 maxRetries 3 }

The context & correlation engine is also configured via a policy. Here we
define that we would like context data to be recalculated every 60
seconds:

inst config CCE {
 recalcInterval 60000 -- in ms }

86

Madhvani, N., Imperial College, London

6.5 Composing system and user policies

Next, we will define the system and user policies for our system.

6.5.1 System policies

The first policy specifies that all devices defined as being alarm devices
should sound with a specific alarm pattern (we assume pattern_2 is one
of the types) when the appointmentAlarm event occurs. Note that we
don’t make use of the apptText, since these devices cannot display the
text:

inst oblig appointmentAlarm {
on e = appointmentAlarm(apptText);
subject /policies/system ;
target t = /devices/alarm ;
do soundAlarm(pattern_2) ; }

The call diversion functionality is implemented as a user policy, rather
than as a system policy and we consider it later. This is because it is only
Bob who can specify where he would like his calls diverted to.

Next, we implement a context based policy to switch Bob’s phone and
PDA devices on to silent mode when he enters a cinema:

inst oblig silentMode {
on e = epoch60Seconds();
subject /policies/system ;
target t = /devices/phone ;
do switchToSilentMode() ;
when context(location) == “CINEMA” }

Note that we assume the event epoch60Seconds()2 is an internal system
event that triggers automatically every 60 seconds and allows us to
execute policy at regular intervals. This event is provided directly by the
events engine. Therefore every 60 seconds, we check if the location has
changed to “CINEMA” – if it has, then the action is carried out. We
assume that the context variable “location” is provided by the context &
correlation engine.

Similarly, we can define a policy to switch back to an audible ring when
appropriate:

inst oblig audibleRing {
on e = epoch60Seconds();
subject /policies/system ;
target t = /devices/phone ;

2 This concept was not proposed in our design and is an extension to the
architecture.

87

Policy-driven Middleware for Personal Area Networks

do switchToAudibleRing() ;
when context(location) != “CINEMA” }

The following policy enables Bob to be informed about incoming phone
calls via his MP3 player, if it is playing audio:

inst oblig incomingPhoneCall {
on e = incomingCall(callerID);
subject /policies/system ;
target t = /devices/musicplayers ;
do pauseAudio() pausedForIncomingCall

 = true playCallerID(callerID) ;
when t.isAudioPlaying }

Note that in the above policy the when condition is based on the target
and would therefore be encapsulated without our action data object and
evaluated when it reaches each device in the target domain. When the
call ends:

inst oblig endedPhoneCall {
on e = endedPhoneCall();
subject /policies/system ;
target t = /devices/musicplayers ;
do playAudio() pausedForIncomingCall

 = false ;
when t.pausedForIncomingCall }

The final set of policies implements the missed calls functionality – if 2
missed call events are received consecutively then alarm devices should
bleep with pattern_3. Firstly, we define the correlation policy which is
sent to the context & correlation engine:

inst oblig correlationMissedCalls {
on derived(“2 * missedCall(callerID)”) ;
subject /policies/system/derived ;
do event(twoMissedCalls) ; }

Next, we make use of the twoMissedCalls aggregate event in the usual
way:

inst oblig bleepOnMissedCalls {
on e = twoMissedCalls();
subject /policies/system ;
target t = /devices/alarm ;
do soundAlarm(pattern_3) ; }

Our simple context & correlation engine only supports aggregate event
generation based on the occurrence of events of a particular name. A
more advanced model might be able to allow for the specification of
conditions based on the individual events. For example, in this case we

88

Madhvani, N., Imperial College, London

might want to only raise the twoMissedCalls event if the callerID
parameter in both events was the same.

6.5.2 User policies

The policy to enable call diversion when the battery is low is implemented
as a user policy – these policies are typically configured by the user or
administrator of the cell rather than being embedded in firmware. We
use the following policy:

inst oblig callDivertOnBatteryLow {
on e = batteryLow(percentRemaining);
subject /policies/user ;
target t = /devices/phone/pda_phone ;
do divertCalls(“07923919288”) ;
when e.percentRemaining < 10 }

In the above policy, the number to divert to should be configured by the
user. Note that our target here is a single target, not a domain. We
refer specifically to /devices/phone/pda_phone which is Bob’s pda_phone
device. We could equally have referred to it as /devices/pda/pda_phone
since it exists in that domain too.

In order to support this policy, the following authorisation policy needs to
exist. This allows for this policy to be added to the system by the user:

inst auth+ allowCallDiversionPolicies {
subject /devices/phone ;
target /policies/user ;
action installPolicy(p) ;
when p.do == “divertCalls*” }

Note that we do not provide an implementation for authorisation policies
as part of this work. However the above policy specifies that only devices
in /devices/phone should be able to install a policy in the /policies/user
domain, and only if the do action begins with divertCalls. We have
assumed that a suitable authorisation server will be able to handle
wildcards in this manner.

6.6 Summary

In this chapter we have presented a hypothetical scenario involving a set
of devices in a personal area network. We discussed the kinds of
problems that a user might face without a middleware platform, and then
presented how the situation might change with this extra functionality.
We then provided a walkthrough of how our solution could be configured
to deliver this functionality, including specification of relevant SMC,
system and user policies.

89

Policy-driven Middleware for Personal Area Networks

7 Building a prototype
The purpose of this chapter is to present the work that we have carried
out as part of the third deliverable of this project, which involves the
development of a prototype system based on a subset of the middleware
architecture that we have proposed. The intention is to use actual
hardware and software components to provide a ‘proof of concept’
demonstration for several of the key concepts that we have discussed
earlier in this report and to analyse the results of this exercise which will
feed into our suggestions for potential future directions in this research
area.

7.1 Prototype objectives

Our primary objective is to bring together elements from our background
study (see Chapter 2) with the middleware architecture and case study.
The purpose of the background study was not only to look at
developments in the research areas related to this project, but also to
investigate the ‘state of the art’ with regards to hardware and software
platforms for mobile devices. As part of this work, we looked at wireless
technologies such as Bluetooth and WiFi, and discussed development
platforms such as Microsoft’s .NET Compact Framework, Java 2 Micro
Edition (J2ME) and Symbian OS. These technological developments are
of importance, since they effectively define the scope of what is feasible
to implement today.

We wish to demonstrate the behaviour of an asynchronous event bus,
including event quenching to improve the efficiency of the system.
Devices should be able to join a cell and have actions performed on them
via the execution of policies. Whilst we are unable to provide a full
implementation for the middleware due to time constraints, the prototype
is designed to cover the most important areas of the system.

7.2 Choice of implementation environment and tools

In this section we briefly discuss the hardware and software platforms
that we are selected for this exercise and a rationale for these decisions
where appropriate.

7.2.1 Programming language: Java

We have selected Java as a programming language primarily due to its
flexibility and cross-platform capabilities. An increasing number of
devices provide some support for Java, either in the form of a virtual
machine for Java 2 Micro Edition (J2ME) or in some cases, Java 2
Standard Edition (J2SE). The advantage of Java is that code is compiled
into Java bytecode which can be executed on any Java Virtual Machine

90

Madhvani, N., Imperial College, London

(JVM). This allows us to write code that can run on a range of different
underlying hardware platforms (e.g. Motorola Dragonball, ARM, Intel)
without modification.

We also considered Microsoft’s C# language which provides similar
features to Java, however this restricts us to running software on devices
that support the Compact Framework. Currently, this includes a subset of
Microsoft Smartphones and Pocket PC devices. Compact Framework is
not available for competitive platforms such as Symbian OS. The
advantages of using Compact Framework however are that it provides the
developer with a relatively rich API with which to interact with the
hardware. Achieving the same behaviour in Java may prove to be a more
arduous task.

To achieve maximum possible interactivity with the hardware, the
Symbian OS SDK is a good choice, however we discovered that this only
supports C++ and has a relatively steep learning curve. In addition, Java
provides features such as automatic garbage collection which generally
reduce development time.

7.2.2 Development IDE: Eclipse

We have chosen the Eclipse Integrated Development Environment (IDE)
which was originally developed by IBM and has recently transferred to the
responsibility of an independent organisation known as the Eclipse
Foundation [ECLIWWW]. The advantages of Eclipse are that it is open
source and operates in a multi-language, multi-platform, multi-vendor
environment. For example, we can choose to develop in the same way on
a Microsoft Windows machine as we can on one that is running a
distribution of the Linux operating system.

An important design feature of the Eclipse software is the ability to
‘refactor’ code with ease. For example, we can move a class from one
package to another, and Eclipse will automatically make the necessary
modifications to the code, adding package and import statements where
appropriate. This feature is also extremely useful when it is necessary to
rename classes. Again, Eclipse has the ability to automatically change all
source files so they make use of the new name of the class.

7.2.3 Portable device: Microsoft Pocket PC & Jeode PersonalJava

We make use of HP iPAQ h5550 devices (see Figure 2.7) which are
recently-launched Pocket PCs running Microsoft’s Pocket PC 2003
software and the .NET Compact Framework. The h5550 has integrated
Bluetooth and WiFi (802.11b) and infra-red support, eliminating the need
to add these features via expansion cards. In addition, they have fast
Intel XScale PXA255 400Mhz processors and 128MB memory which

91

Policy-driven Middleware for Personal Area Networks

provides ample storage space for installing our code and supporting tools
such as prerequisite client libraries.

The h5550 is bundled with a Java Virtual Machine (JVM) from Insignia
Solutions known as JeodeRuntime. This implements Sun’s PersonalJava
1.2 specification [SUNM04b]. PersonalJava Is gradually being phased out
and replaced with J2ME, however we make use of PersonalJava since it is
supplied with the iPAQ and specifically designed to support it. The
limitations of PersonalJava is that it is a reduced version of the J2SE v1.1
API, which is quite dated and does not include a large number of classes
that we have come to expect from most recent versions of the Java API
such as 1.4. In addition, the Swing graphical libraries are not provided in
PersonalJava and AWT is the only choice. However for the purposes of
our relative simple ‘proof of concept’ simulation, this is not a significant
cause for concern. If implementing this type of middleware for a real
application, we would advise the choice of the newer J2ME with the
enhanced profiles such as the ‘Personal Profile’ that provides a richer API.

7.2.4 Event handling: Elvin

As discussed earlier in this report, the Elvin events system is provided as
two components – the Router product which is effectively the events
engine, and a set of client libraries that allow devices to interact with the
event bus. Since our prototype is based on the Java platform, we have
selected the Elvin Java SDK which is supplied as a JAR file that simply
needs to be installed onto every client device. The advantages of the
Elvin Java SDK are that it provides automatic reconnection support. If
the network connection is interrupted, reconnection to the Elvin Router
will take place automatically and seamlessly. The SDK also supports
HTTP tunnelling, which is useful for devices that are behind a firewall, or
can only make outbound communication in a restricted manner. The
Elvin Java SDK has been fully tested against PersonalJava 1.2 and the two
are therefore an appropriate choice.

The Elvin Router currently only supports desktop and notebook platforms.
In the future, as the processing power and capabilities of handheld
devices increases, support may be added for them. Therefore for the
purposes of our simulation we installed the Elvin Router on a IBM
Thinkpad 570 notebook computer, running Microsoft Windows 2000. The
notebook was equipped with a Netgear 802.11b Wireless Ethernet card.
The Elvin Router provides a console window that shows its activity. This
is useful for debugging and a screenshot is shown in Figure 7.1. In this
example, the Elvin Router receives a subscription request from a device
and subsequently sends a quench event to those devices that generate
that can generate the event specified in the subscription.

92

Madhvani, N., Imperial College, London

Figure 7.1: Screenshot of an Elvin Router console

Whilst Elvin is now developed by Mantara and is a commercial product,
their Academic Program provides academics with free licences without
support.

7.3 Standards & development practice

7.3.1 Coding standards

In order to improve the maintainability of our source code, and reduce
the effort needed to make future changes, we adhere to a set of
development standards based on those that have been widely used for
other projects in the last few years. Firstly, for the naming of classes and
interfaces we use the standard proposed by Sun Microsystems. All class
names should start with an uppercase letter and underscores should not
be used to separate words – instead, the words should be concatenated
together with the first letter of each word capitalised. All other letters
should be lower-case. Therefore ImportantCoreClass is acceptable, but
notation such as Important_Core_Class or importantCoreClass is not.

Furthermore, we make use of packages to provide some logical grouping
of classes. Our package hierarchy is presented in Section 5.8.1) and
attempts to split the code into packages based on a division by sub-
system.

Method names also follow the Sun Microsystems standard. Methods must
always start with a lower-case letter. Again, underscores should not be
used to connect words – instead, the words should be concatenated with

93

Policy-driven Middleware for Personal Area Networks

the first letter of each word (except the first) capitalised. All other letters
should be lower case. Therefore getDomainData() is acceptable, but
GetDomainData() is not.

We use a similar notation for variable names, with the first letter in lower-
case and the first letter of each additional word in uppercase. However,
constant values are entirely capitalised, e.g. CONSTANT, and class
variables (i.e. static variables) are prefixed with two underscores, e.g.
__class_variable. We do not use any notation to distinguish between
instance variables and local variables.

In terms of commenting style, since this is a simulation and not a full
implementation we do not use the JavaDoc standard. However the code
has been well commented where appropriate using the standard “//”
comment prefix.

7.3.2 Source code control

During the development, we made use of the Concurrent Versions System
(CVS) [COLLWWW] as a repository for our source code. Whilst we were
not carrying out any distributed development, CVS is useful for building a
history of file versions. In addition, we can tag versions of files into a
release, allowing us to fetch those same set of files again if it is necessary
to revert to an old version of the system. To make the administration of
CVS easier, we used the WinCVS tool [WINCWWW] which provides a GUI
for the Microsoft Windows platform.

7.3.3 Unit & modularised testing

Since our architecture is divided into a set of sub-systems, we use unit
and modularised testing in order to reduce the chance of errors when the
system is brought together as a whole. Our practice is to test small
components in isolation, including the behaviour of a class and then a
package. Whilst formal, written test plans were not produced, ad hoc
testing are still extremely useful at finding bugs in code at an early stage
and reducing the time taken to resolve such problems in the future.

7.4 Prototype detail

7.4.1 Events system

The prototype model we have implemented demonstrates the application
of the Elvin event-based middleware product in the domain of personal
area networking. Whilst we are currently unable to run the Elvin Router
on a handheld device, the Elvin client libraries were successfully installed
and tested on a HP iPAQ Pocket PC device. The Elvin JAR file has a very

94

Madhvani, N., Imperial College, London

small footprint of about 250KB, which makes it suitable for installation on
a wide range of devices that provide a Java Virtual Machine.

7.4.2 Networking technologies

As part of our tests, we tried three different types of networks:

• WiFi 802.11b in infrastructure mode – our iPAQ and notebook
computer were connected to a D-Link DWL-700AP Wireless Access
Point, and IP addresses were assigned by a DHCP server on the
network.

• WiFi 802.11b in ad hoc mode – our devices were both set up in
ad hoc node and used their own IP addresses in the 169.254.x.x
range. In ad hoc mode, a Wireless Access Point is not required.

• Bluetooth Personal Area Network (PAN) – we set up a
Personal Area Network between the iPAQ and a notebook PC with
Bluetooth USB dongle. IP addresses for both devices were
configured manually.

Elvin operated successfully over all of these bearers; however the range
for Bluetooth was obviously much lower than for the WiFi solution. For
the relatively simple tests we carried out, we did not notice any significant
performance differences between the three solutions. Clearly, ad hoc
networks are of greater interest to us, since in a personal area network, it
is undesirable to have to implement components such as a DHCP server
to assign IP addresses.

7.4.3 Functionality tests

We implemented a domain server based on a centralised model. Whilst
our prototype implementation is relatively simple in design, it successfully
demonstrates the ability to group devices and policies into domains, and
the propagation of actions from a domain to its sub-domains. In addition,
we implemented several policies as Java objects and corresponding policy
management agents running as threads. As discussed earlier in this
report, we have not developed a compiler to translate high-level policy
syntax into Java code, and therefore the compilation is effectively carried
out by hand.

Due to the fact that we had a relatively limited set of hardware for our
prototype system, and that it was not feasible to develop instrumentation
for devices such as MP3 players and other electronic devices, we used the
iPAQ as a simulator for other hardware. The occurrence of events was
simulated by making appropriate method calls. For example, we
simulated an incoming call to a mobile phone, and demonstrated the
transmission of this information to the event bus and on to consumers

95

Policy-driven Middleware for Personal Area Networks

subscribed to the event. We created several subscriptions to test that
events are sent only to the devices that have requested them.

Since we discovered that the current version of Elvin only supports event
quenching based on attribute names and not values, we simply added an
attribute to each event, with the attribute name equal to the event name.
This workaround enabled us to quench based on event names. We
implemented several scenarios based on quenching to demonstrate that
devices were reliably informed by the Elvin Router about changes to
relevant subscriptions. In addition, devices in our personal area network
stopped sending events on to the bus, when the number of consumers
listening to an event fell to zero.

As part of this work, we were also interested in showing how actions to be
performed on a device can be encapsulated inside an object by a PMA and
transmitted to a device for execution. We chose this approach in our
middleware architecture as an alternative to the approach of making
remote method calls on a device. The implementation for this mechanism
was carried out in the way in which it was proposed in our detailed
architectural design; we provided functionality in the PMA to serialize the
action object and sent it across as an event to the domain management
agent, for distribution to its device members. The object was successfully
deserialized by the devices and the actions carried out.

Due to time constraints, the context & correlation engine functionality was
not implemented as part of our prototype. However in terms of providing
support for correlated events, the CCE behaves in a very similar way to a
policy management agent and subscribes to individual events with the
Elvin Router.

7.5 Summary

The prototype phase has served as a useful ‘proof of concept’
demonstration of key parts of our middleware architecture using real
hardware and software components. Despite the fact that we did not
make use of a range of consumer devices such as mobile phones and
music players, it was possible to simulate a range of scenarios using the
HP iPAQ Pocket PC devices. We successfully demonstrated a working self-
managed cell, composed of key management components and devices.
We also showed that it is feasible for policy management agents to
package actions within an object, serialize this into a byte stream and
send it across to the devices that can reverse this process and carry out
the necessary operations.

We did not focus on the aspect of performance testing as part of this
work. However worthwhile future work could be conducted in
determining how the system behaves when placed under varying levels of

96

Madhvani, N., Imperial College, London

stress. For example, we have assumed that our asynchronous event bus
provides a reliable delivery mechanism, however it is quite possible that
with much higher loads than we have applied, events may not always be
correctly delivered or may be subject to delays.

97

Policy-driven Middleware for Personal Area Networks

8 Evaluation and future directions
In this final chapter to our report, we carry out a review of the project
and provide an overview of the work that we have carried out. In
addition, we attempt to highlight both the key contributions and
limitations of our architecture so that we are able to make suggestions as
to what we perceive to be the potential future directions for this work in
particular and the research area in general.

8.1 A review of our work

We started the first chapter of this report by considering a hypothetical
situation involving our two fictional characters, Alice and Bob. The
purpose of this was to illustrate a typical type of problem that many of us
face today. We own an increasing number of intelligent personal devices
that are designed to improve our standard of living, yet we find ourselves
spending more and more time configuring and operating them.
Unfortunately, the vast majority of consumer devices require a
considerable amount of user interaction, and are unable to readily interact
with one another in an autonomic fashion to deliver an integrated service
to the user. In order to further motivate our work, we present a different
scenario in which Alice and Bob experience the benefits of a world in
which personal devices are able to collaborate, exchange data and react
to one another in an intelligent and seamless manner. Our objective has
therefore been to develop a middleware solution that will enable these
types of interactions, and minimise the level of input required from the
user.

We moved on to a background study, covering a wide range of pertinent
research areas such as policy specification, middleware systems, ad hoc
networking, and recent developments in technologies and platforms for
portable devices. In addition, we looked at relevant research projects
such as MIT’s Project Oxygen, and AMUSE which is being jointly
undertaken by Imperial College and the University of Glasgow. This
process assisted us in developing a specification for our project, including
the issues that we decided to tackle as part of our proposed middleware
architecture.

We then presented our design, based on the concept of a self-managed
cell as proposed by the AMUSE project. Our architecture includes a set of
management components that can potentially be distributed across
devices in a personal area network. Communication between
management components and devices takes place via a single
asynchronous event bus which is based on the ‘one-shot’ paradigm rather
than a request-reply approach. We make use of parts of the Ponder
policy specification language and propose a few extensions as well in

98

Madhvani, N., Imperial College, London

order to describe policies that influence the behaviour of devices and also
of management components. We subsequently provide a detailed
architectural diagram, breaking our solution into sub-systems and
suggesting a software implementation using UML notation.

Our case study was designed to highlight a potential application of the
technology that we have developed, translating software design and
implementation into real benefits at the application and user levels. In
this section, we presented a guide to the kinds of possibilities that our
architecture provides, and how the system can be configured to behave in
the required way. Finally, we discussed a prototype implementation that
was built to test several of the concepts that we have proposed.

8.2 Key achievements & contributions

Our overall objective for this project was to develop a set of middleware
that allows devices within a personal area network (PAN) to communicate
together in an effective, efficient and appropriate manner, with a view to
minimising the amount of input needed from the end of user. Here we
consider specific aspects of our work that we consider to have made a
positive contribution in this area. We will then move on to look at
problems and limitations of our approach in the following sub-section.

8.2.1 A new approach and application domain

The application of policy specification to the area of personal area
networks is a relatively new one. In particular, very little work has been
carried out to date that is related specifically to the autonomic interaction
of personal consumer devices. Whilst the work being carried out at MIT
on Project Oxygen advocates a ubiquitous human-centred architecture in
which the management functions are effectively hidden from users, the
emphasis is on allowing users to interact with the system using advanced
speech and vision techniques. In addition, they focus on allowing users
to be able to pick up “anonymous” devices and for those devices to adapt
to a user’s profile for a relatively short period of time. Our approach is
quite different, since we envisage that personal devices in our self-
managed cell will typically be owned by a single user. We have therefore
focussed quite specifically on defining the structure of a self-managed
cell, the behaviour of the various management components within the cell
and how we can use policies to define the autonomic interaction of
devices.

8.2.2 Our proposed extensions to the Ponder language

We provide a flexible and extensible architecture that uses policies not
only to define interaction between devices, but also to configure the SMC
– we refer to these as “SMC policies”. We advocate the use of policies for

99

Policy-driven Middleware for Personal Area Networks

all aspects of configuration. Whilst we have made use of the existing
Ponder policy specification language, we have proposed extensions in a
few areas. We use the notation “inst config” to define SMC policies.
SMC policies would typically be compiled down into code in addition to
obligation policies. We have also proposed an alternative type of
obligation policy to be used for ‘derived’ events. These are events are
based on the occurrence of a series of other events. We use the
“derived” keyword and capture the event pattern as a string inside
parentheses, e.g. derived(“2*eventA eventB”) evaluates to true is A
occurs followed by A again, and then B. In addition we use the keyword
“event” as part of the do condition to indicate that that action involves
generating another event, rather than performing any operations on
devices.

Whilst Ponder makes use of syntax such as:

when time == “1600”

we make use of a reserved keyword “context” to specifically indicate that
data is being obtained from something external to the cell. E.g.

when context(time) == “1600”

8.2.3 Correlated events

One of the key management components we have proposed is capable of
dealing with correlated events. In the sub-section above, we looked at
the use of the “derived” keyword in policies that define these events.
The purpose of supporting correlated events is our view that enabling
policies based on raw event data alone is not helpful, since in many cases
we are much more interested in responding to particular patterns of
events.

8.2.4 Event quenching

Our implementation uses a quenching mechanism to improve the
efficiency of the system. Since it is undesirable for devices to flood the
event bus with events that are not required by any other entity, our
scheme uses the Elvin product to pass subscription information on to
devices such that events are only transmitted if there is interest in them.

8.2.5 Encapsulation of actions in serializable objects

We take a different approach to the way in which actions are carried out
on a ‘target’. Rather than the ‘subject’ making a remote method call on
the target, we instead package the action inside an object and send it
across to the target for execution. The advantage of this approach is that
it enables us to include conditions that can be evaluated against each

100

Madhvani, N., Imperial College, London

target object individually, in the case where the target consists of a group
of objects. The actions may therefore apply to some of the objects in the
target group, but not others. The disadvantage of this approach is that
the onus to execute the actions falls on the target rather than the subject,
and of course there are issues of security and trust surrounding this.
However since our application domain is a personal consumer network,
trust is unlikely to be a significant issue.

8.2.6 Distributed domain structure

We propose a scheme in which each domain is managed by a Domain
Management Agent (DMA) which runs as a thread. Our design enables
the domain structure to either be centralised or distributed, depending on
requirements. In certain circumstances, it may prove beneficial to have
parts of the domain hierarchy split across various devices.

8.2.7 Multi-threaded policy management agents

Our policies are managed by policy management agents and each of
these runs as a thread. This model not only allows us to distribute the
policies across multiple devices, but also means that we minimise the
delay between the policy sub-system and other entities. A policy
management agent can receive events directly from the event bus and
these are queued using the mailbox mechanism that we proposed earlier.
We make the assumption that threads are generally extremely
lightweight, so running a reasonably large number of threads is not likely
to result in performance issues.

8.3 Limitations

Here we aim to provide a self-critical analysis of the project, highlighting
limitations of our work and discussing the key problems that were faced.
Due to project timescales, a number of desirable features could
unfortunately not be designed and/or implemented.

8.3.1 Policy compilation

A significant area that this project has not covered at all relates to the
compilation of policies from the OCL-like syntax used by Ponder into an
implementation language such as Java. Whilst we have described
policies using OCL syntax in the design chapters and in the case study,
we have made the assumption that compilation will be carried out by
hand. An interesting exercise would be to extend the existing Ponder
compiler to be able to generate code for the types of policies that we are
using here.

101

Policy-driven Middleware for Personal Area Networks

Rather than compiling our policies from OCL into Java for example, a
better approach may be to generate an intermediate XML representation
from the OCL which can then be translated into code for a language such
as Java or C#.

8.3.2 Security & trust issues

Issues of security and trust are generally extremely important in
distributed applications, though for the purposes of this project we
focussed on the structure of a self-managed cell and component
interactions, rather than on the security-related aspects. For example,
we have assumed that an action sent to the target will be executed upon
arrival. Since no reply is returned to the PMA, we have no way of
knowing whether or not the action was actually carried out.

There are a number of issues that should be considered in more depth,
including defining who has access to information and how we enforce
such a security model. For example, we may only wish to give certain
policies the ability to carry out privileged operations on a set of devices.
In addition, whilst we distinguished between system policies (i.e. those
that are semi-static and tend to be embedded in firmware) and user
policies (i.e. those that are configurable by the user), we have not looked
at how this would be enforced.

8.3.3 Conflict detection & resolution

There are a number of cases in which conflicts may occur. For example,
two policies may trigger at the same time, yet may disagree on what
action needs to be carried out. We can divide conflicts into those that can
be detected at compilation time, and those that can only be detected at
runtime. The latter typically pose more arduous challenges, since we
need to be able to detect and resolve these ‘on the fly’. We did not
consider conflict detection, however methods based on priorities or
timestamps are a good starting point for investigation in this area.

To a limited extent, we did however consider the issue of conflicts with
regards to deciding which domains a device should belong to. Our
solution involved adding a device to both groups in the case of a conflict,
but there are clearly a number of other, potentially better approaches to
the problem.

8.3.4 Semantics for correlated events

We proposed a simple state machine model for keeping track of
correlated events. However there are a number of issues surrounding
this that we have not considered in any significant depth. These include
determining how events should be consumed when a full or partial match

102

Madhvani, N., Imperial College, London

occurs. In addition, if two consecutive events of the same type occur, yet
we have only matched on one of these, we need to decide which event to
choose when we retrieve data from the event. We may wish to choose
the most historic or perhaps the most recent.

8.3.5 Cell interaction

Our original intention was to spend some time investigating the possible
ways in which self-managed cells can interact with each other to co-
operate in a layered or peer-to-peer manner, or to compose larger
structures. Unfortunately due to time constraints we were unable to
investigate these interesting paradigms. However we envisage that one
possible model for inter-cell communication may be a “roaming” model,
analogous to cellular phones in a GSM network. Devices may be allowed
to roam into ‘foreign’ cells for short periods of time and be provided with
a restricted level of privileges.

8.4 Suggested directions for future work

By considering the limitations of our work above, we have already
described several of the possible areas for future extensions to this
project. In our opinion, the implementation of a security model would
significantly enhance the usefulness and potential applications of the
architecture. Enforcing security policies in an efficient manner is
extremely important if cells are to communicate with one another, or
devices allowed to overlap more than one cell.

Our prototype model was somewhat restricted by the lack of a suitably
rich Java implementation for a portable device. Unfortunately many
hardware features cannot be addressed via PersonalJava or J2ME,
however developments in this arena are almost certainly likely to increase
the possibilities available to us within the next few years. A related area
that is also becoming increasingly feasible involves learning from user
behaviour. In addition to having policies that are based on events and
allowing users to configure their own policies, a more useful system may
allow for policies to be generated dynamically and in a seamless manner.
This eliminates the need for users to have to learn policy syntax – they
should be able to make changes via their device’s graphical user
interface.

Finally, we believe there is a significant amount of work to be done to
develop standards for device profiles. Just as the Bluetooth profiles were
developed by a consortium of key industry players, it may be worthwhile
to set up a similar special interest group to investigate and attempt to
standardise profiles for device interaction. A profile should define the
events that the device is capable of generating, and the actions that it is

103

Policy-driven Middleware for Personal Area Networks

capable of handling. There are various issues surrounding profiles, such
as maintaining backwards compatibility with older devices when newer
versions of profiles become available. In addition, whilst Bluetooth
profiles tend to be static from the time of manufacture, we believe that it
should be feasible to update profiles via firmware updates in order to
ensure that users receive the benefits of new profiles as and when they
are released.

104

Madhvani, N., Imperial College, London

A1 Requirements capture

In this appendix we present details of our requirements capture exercise.
We carried this out before embarking on the high-level system design.
The requirements have been divided into primary and secondary, where
the former category is used to identify those requirements that are
considered to be critical. Note that within each category, the
requirements are listed in no particular order:

Req
ID

Requirement description

PRIMARY REQUIREMENTS
P1 The system will provide a domain server with hierarchical

structured domains that can contain devices and policies.
P2 Devices can belong to one or more domains depending on the

functionality they implement.
P3 The system will be able to interpret ‘system’ policies that define

the behaviour of devices.
P4 It will be possible to add, remove and temporarily disable policies.
P5 Policies will also be stored in domains for manageability.
P6 Policy management agents (PMAs) will be provided that, when

active, will be responsible for executing one or more policies.
P7 The system will support the dynamic addition and removal of

devices from the cell.
P8 Devices will be managed by one cell only.
P9 A discovery service will be provided as part of the management

functionality and discovering the presence of devices will be the
sole responsibility of this component.

P10 The discovery service will send out a message to registered
devices on a regular interval in order to determine if they are still
in range.

P11 The discovery service will generate events of its own onto the
event bus when devices are discovered or lost.

P12 The system will provide an asynchronous event bus that will be
used for all communication between entities.

P13 The “target” for a policy can be either a domain or a specific
device. Where it is a domain, the action will be carried out on all
of the entities in that domain.

P14 The event service will contain buffers to aggregate events, e.g.
look for specific patterns as specified by policies.

P15 The system will support policies that trigger based on aggregated
event occurrences, e.g. if an event occurs a certain number of
times or if events occur in a specific pattern.

P16 The system will support external events, i.e. those generated by
devices that are effectively not part of any cell.

P17 Policies can be based wholly or partly on external events, and can
also evaluate conditions based on external devices.

SECONDARY REQUIREMENTS
S1 Users will be able to specify ‘user’ policies to customise the

behaviour of the system.
S2 Events will inherently contain a timestamp indicating the time at

which the event was generated. This information will be

105

Policy-driven Middleware for Personal Area Networks

accessible by the policy management agent.
S3 The system will write cell management data such as domain

members to disk upon shutdown of a cell, such that the
information can be reinstated at startup.

S4 Network traffic will be kept to a minimum to economise power
usage.

S5 The behaviour of the discovery server will be configurable via
internal policies, e.g. frequency of “ping” message, number of
retries.

S6 The event bus must have minimal latency – messages must pass
through and be delivered to their destination(s) as quickly as
possible.

S7 The event bus must provide high availability and reliability since
communication is asynchronous in nature.

106

Madhvani, N., Imperial College, London

A2 Bibliography

[AFFI04] Affix in a Nutshell: Open Source Bluetooth Protocol Stack for Linux:
Usage manual, http://affix.sourceforge.net/affix-doc/c1051.html

[BANT03] Bantz, D.F., et al, “Autonomic personal computing”, IBM Systems
Journal, vol. 42, no. 1, 1993, pages 165 – 176.

[BUSN03] BusinessWeek: Tech Wave 1: Utility Computing,
http://www.businessweek.com/magazine/content/03_34/b3846619.htm

[CAPK04] Capkun, S., Hubaux, J-P., Jakobsson, M., “Secure and Privacy-
Preserving Communication in Hybrid Ad Hoc Networks”, EPFL-IC Technical Report
no. IC/2004/10.

[COLE98] Coleman, D., “A Use Case Template: draft for discussion”, available at
Bredemeyer Consulting, http://www.bredemeyer.com/pdf_files/use_case.pdf

[COLLWWW] Concurrent Versions System, https://www.cvshome.org/

[CURB02] Curbera, F.; Duftler, M.; Khalaf, R.; Nagy, W.; Mukhi, N.;
Weerawarana, S.; Unraveling the Web services web: an introduction to SOAP,
WSDL, and UDDI, Internet Computing, IEEE, Volume: 6, Issue: 2 , March-April
2002, Pages:86 - 93

[CYBIWWW] Cybiko Inc., http://www.cybiko.com

[DAMI99] The Policy Framework,
http://www.doc.ic.ac.uk/~ncd/policies/PolicyFramework.html

[DAMI01] Damianou, N., Dulay, N., Lupu E., Sloman M., “The Ponder Policy
Specification Language”, Proc. Policy 2001: Workshop on Policies for Distributed
Systems and Networks, Bristol, UK, 29-31 Jan. 2001, Springer-Verlag LNCS 1995,
pp 18-39.

[DES03] Desai B., Verma V., Helal S., “Infrastructure for Peer-to-Peer
Applications in Ad-Hoc Networks”, Submitted to 2nd International Workshop on
Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA, February 2003.

[DMTF04] Distributed Management Task Force (DMTF) – CIM Schema – Policy
Model, http://www.wbemsolutions.com/tutorials/CIM/cim-model-policy.html

[DMTF04b] DMTF – Directory Enabled Network (DEN) Initiative,
http://www.dmtf.org/standards/den/

107

Policy-driven Middleware for Personal Area Networks

[DORS98] Dorsey, J., “A performance comparison of multi-hop wireless ad hoc
network routing protocols”, Carnegie Mellon University, Slides from the Fourth
Annual ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom ’98), http://www-2.cs.cmu.edu/~wearable/group/slides/ad-hoc-
performance/img0.htm

[DSOL03] IEEE Distributed Systems Online: Middleware,
http://dsonline.computer.org/middleware/index.htm

[DSTCWWW] Distributed Systems Technology Centre: Elvin content based
messaging, http://elvin.dstc.edu.au

[ECLIWWW] Eclipse.org, http://www.eclipse.org

[GROT01] Groten, D., Schmidt, J.R. “Bluetooth-based Mobile Ad Hoc Networks:
Opportunities and Challenges for a Telecommunications Operator”, IEEE VTS 53rd
Vehicular Technology Conference, VTC 2001 Spring, pp. 1134-1138, May 2001.

[HENR02] Henry, P.S., Luo, H., “WiFi: What’s Next?”, IEEE Communications
Magazine, December 2002, pages 66 – 72.

[HOR02] Horozov T., Grama A., Vasudevan V., Landis S., “Moby – A Mobile
Peer-to-Peer Service and Data Network”, Proceedings of the International
Conference on Parallel Processing (ICPP’02), 2002.

[HUBA01] Hubaux, J-P., Buttyán, L., Capkun, S., “The Quest for Security in
Mobile Ad Hoc Networks”, Proceedings of the ACM Symposium on Mobile Ad Hoc
Networking and Computing (MobiHOC 2001).

[IBMR96] IBM Almaden Research Center, PAN Fact Sheet: Hi-Tech, Hi-Touch,
http://www.almaden.ibm.com/cs/user/pan/pan.html

[JAVA01] JavaMobiles: List of JVMs for PDAs,
http://www.javamobiles.com/jvm.html

[JXMEWWW] JXTA for J2ME (CLDC/MIDP), http://jxme.jxta.org/

[LUPU03] Lupu, E., Sloman, M., Dulay, N., Sventek, J., “AMUSE: Autonomic
Management of Ubiquitous Systems for e-Health”,
http://www.doc.ic.ac.uk/~ecl1/projects/AMUSE/

[KORT02] Kortuem G., Schenider J., Preuitt D., Thompson T. G. C., Fickas S.,
Segall Z., “When Peer-to-Peer comes Face-to-Face: Collaborative Peer-to-Peer

108

Madhvani, N., Imperial College, London

Computing in Mobile Ad hoc Networks”, First International Conference on Peer-to-
Peer Computing (P2P'01), August 27 - 29, 2001, Lingköping, Sweden.

[MANEWWW] Mobile Ad Hoc Networking (MANet) – IETF Working Group
Information, http://protean.itd.nrl.navy.mil/manet/manet_home.html

[MANT04] Elvin Subscription Language Reference 4.0,
http://www.mantara.com/support/docs/guides/elvin-sublang/elvin-sublang-
4.0.pdf

[MANTWWW] Mantara Software, http://www.mantara.com/

[MOBI03] Mobilni – Internet Magazin, June 2003,
http://www.mobilni.co.yu/2003_jun/p_nokia_6600.htm

[NOKI03] Forum Nokia: J2ME & Symbian OS: A Platform Comparison,
http://ncsp.forum.nokia.com/downloads/nokia/documents/J2ME_Symbian_OS_1_
01.pdf

[OXYGWWW] MIT Project Oxygen, http://oxygen.lcs.mit.edu/

[PREN04] Prentice Hall: Bluetooth and other wireless technologies,
http://www.phptr.com/articles/article.asp?p=24265&seqNum=3

[REIL00] Java RMI & CORBA: A comparison of two competing technologies,
http://www.javacoffeebreak.com/articles/rmi_corba/

[SCHU04] Schumacher, A., Painilainen, S., Luh, T., “Research Study of MANET
Routing Protocols”, Department of Computer Science, University of Helsinki,
Finland. Available at
http://www.cs.helsinki.fi/u/kraatika/Courses/IPsem04s/manet.pdf.

[SLOM02b] Morris Sloman, Naranker Dulay, and Emil Lupu. The PONDER Policy
Based Management Toolkit, August 2002. http://www-
dse.doc.ic.ac.uk/Research/policies/ponder/PonderSummary.pdf.

[STRE04] Streettech.com: Cybiko,
http://www.streettech.com/archives_gadget/cybiko.html

[SUNM04] Sun Microsystems: Deploying Wireless Java Applications,
http://developers.sun.com/techtopics/mobility/midp/articles/bluetooth1/

[SUNM04b] Sun Microsystems: PersonalJava Application Environment,
http://java.sun.com/products/personaljava/index.jsp

109

http://csdl.computer.org/comp/proceedings/p2p/2001/1503/00/1503toc.htm
http://csdl.computer.org/comp/proceedings/p2p/2001/1503/00/1503toc.htm

Policy-driven Middleware for Personal Area Networks

[SUNX01] Sun, J., “Mobile Ad Hoc Networking: An Essential Technology for
Pervasive Computing”, Proc. International Conferences on Info-tech & Info-net,
Beijing, China, C:316-321.

[SVEN03] Sventek, J., “AMUSE – Autonomic Management of Ubiquitous Systems
for e-Health”, PowerPoint Presentation Slides, University of Glasgow.

[WALD03] Waldrop, M.M., “Autonomic Computing: The Technology of Self-
Management”, The Future of Computing Project, Woodrow Wilson International
Center of Scholars, July 2003, available from
http://www.thefutureofcomputing.org/Autonom2.pdf

[WINCWWW] CvsGui: WinCVS, http://www.wincvs.org/

[XMLB04] xmlBlaster: Performance tests,
http://www.xmlblaster.org/performance.html

[XMLBWWW] xmlBlaster, http://www.xmlblaster.org

[YUAN04] Comparing .NET Compact Framework with J2ME,
http://www.enterprisej2me.com/pages/resources/compare.php

[ZIMM96] Zimmerman, T.G., “Personal Area Networks: Near-field intrabody
communication”. IBM Systems Journal, Vol. 25, No. 3 and 4, 1996.

110

	Introduction
	Motivation
	Key Project Objectives
	Summary of contributions
	Report outline
	Glossary of terms

	Background
	Overview of areas of interest
	Policy specification
	Ponder (Imperial College, London)
	CIM Policy Model (IETF & DMTF)
	Potential policy caveats

	Middleware systems
	Java RMI
	CORBA
	Web Services: SOAP, WSDL, UDDI
	Elvin
	xmlBlaster

	Wireless LAN & PAN technologies
	Bluetooth (IEEE 802.15)
	WiFi (IEEE 802.11a/b/g)
	Proprietary low-range radio networks
	Infra-red (IrDA)
	Emerging PAN technologies

	Ad hoc networking
	IETF MANET
	Current research issues
	Security in ad hoc networks

	Hardware devices & software platforms
	Symbian OS
	Java 2 Micro Edition (J2ME) and PersonalJava
	Microsoft .NET Compact Framework

	Bringing it all together…
	MIT: Project Oxygen
	AMUSE
	Autonomic computing
	Summary of findings & directions for focus

	Project Specification
	Scope
	Use cases
	Summary

	Architectural Design Overview
	Self-managed cell structure
	Policies and policy management
	System policies for device behaviour
	User policies for customisation
	System configuration policies

	Events system
	Subscription mechanism
	Event generation & quenching

	Domain management agents
	Device discovery
	Device profiles
	Discovery server configuration policy

	Context & Correlation
	Context data
	Correlation (derived) events

	Cell instantiation, standby and shutdown
	Standby mode

	Summary

	Detailed Architectural Design
	An object-oriented architecture
	Events engine
	Elvin Router
	Core communications functionality

	Policies & Policy management agents
	Encapsulation of actions
	Thread & mailbox model
	Basic & derived policies
	Policy compilation

	Device adapters
	Event quenching

	Discovery server
	Domain server
	Mapping from device profiles to domains
	Adding devices to domains
	Handling incoming action objects

	Context & collaboration engine
	Contextual data
	Event correlation

	General architectural issues
	Package structure

	Summary

	Case study
	Scenario overview
	Defining device profiles
	Profile: common
	Profile: pda
	Profile: phone
	Profile: simplealertdevice
	Profile: audioplayer

	A domain hierarchy
	Profile to Domain Ruleset
	Domain structure

	Setting up SMC policies
	Composing system and user policies
	System policies
	User policies

	Summary

	Building a prototype
	Prototype objectives
	Choice of implementation environment and tools
	Programming language: Java
	Development IDE: Eclipse
	Portable device: Microsoft Pocket PC & Jeode PersonalJava
	Event handling: Elvin

	Standards & development practice
	Coding standards
	Source code control
	Unit & modularised testing

	Prototype detail
	Events system
	Networking technologies
	Functionality tests

	Summary

	Evaluation and future directions
	A review of our work
	Key achievements & contributions
	A new approach and application domain
	Our proposed extensions to the Ponder language
	Correlated events
	Event quenching
	Encapsulation of actions in serializable objects
	Distributed domain structure
	Multi-threaded policy management agents

	Limitations
	Policy compilation
	Security & trust issues
	Conflict detection & resolution
	Semantics for correlated events
	Cell interaction

	Suggested directions for future work

